The compound dry cleaning principle is briefly described.A beneficiation test on South African coal was conducted using a model compound dry cleaning apparatus.Excellent results were obtained and the optimum operating...The compound dry cleaning principle is briefly described.A beneficiation test on South African coal was conducted using a model compound dry cleaning apparatus.Excellent results were obtained and the optimum operating parameters were determined.They are:an amplitude of 3.0 mm,a motor frequency of 47.5 Hz,an air volume of 50%,a transverse angle of 7°,and a longitudinal angle of-2°.These conditions yield a clean coal containing 11%ash and a coal production of 75%.The organic efficiency,η,is 95.86%.These results show that the South African coal can be separated effectively by compound dry cleaning,which will popularize the compound dry cleaning method.展开更多
Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate p...Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.展开更多
Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation ch...Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.展开更多
Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The l...Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions. These cultivated bacteria were then used for the leaching process. The changes in solution pH, Eh, Fe2~ concentration, and sulfate ion concentration were monitored throughout the tests. A portion of the pyritic sulfur is transformed into soluble sulfate ion. The desulfur- ization ratio of'42.6g was obtained in a flask shaking test and a ratio of 39.4g was obtained during column leaching. A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days. A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.90510002 and 50921002)the Fundamental Research Funds for the Central Universities (China University of Mining and Technology)(No.2010ZDP01A06).
文摘The compound dry cleaning principle is briefly described.A beneficiation test on South African coal was conducted using a model compound dry cleaning apparatus.Excellent results were obtained and the optimum operating parameters were determined.They are:an amplitude of 3.0 mm,a motor frequency of 47.5 Hz,an air volume of 50%,a transverse angle of 7°,and a longitudinal angle of-2°.These conditions yield a clean coal containing 11%ash and a coal production of 75%.The organic efficiency,η,is 95.86%.These results show that the South African coal can be separated effectively by compound dry cleaning,which will popularize the compound dry cleaning method.
基金Projects(51978244,51979088,51608169)supported by the National Natural Science Foundation of China。
文摘Wind erosion is a major cause of land desertification and sandstorm formation in arid and semi-arid areas.The objective of this study was to evaluate the potential of soybeans crude extract induced calcium carbonate precipitation(SICP)on reducing wind erosion risk of sandy soil.Field tests were carried out in Ulan Buh Desert,Ningxia Hui Autonomous Region,China.Results showed that the SICP method could significantly enhance the surface strength and wind erosion resistance of the topsoil.The optimal cementation solution(urea-CaCl2)concentration and spraying volume,according to experiments conducted on sandy land,were 0.2 mol/L and 4 L/m^2,respectively.Under this condition,the CaCO3 content was approximately 0.45%,the surface strength of sandy soil could reach 306.2 kPa,and the depth of wind erosion was approximately zero,after 30 d completion of SICP treatment.Soil surface strength declined with the increase of time,and long-term sand fixation effects of SICP treatment varied depending on topography.Whereas wind erosion in the top area of the windward slope was remarkable,sandy soils on the bottom area of the windward slope still maintained a relatively high level of surface strength and a low degree of wind erosion 12 month after SICP treatment.Scanning electron microscopy(SEM)tests with energy dispersive X-ray(EDX)confirmed the precipitation of CaCO3 and its bridge effect.These findings suggested that the SICP method is a promising candidate to protect sandy soil from wind erosion in desert areas.
基金Project(2012AA091291)supported by the National High-tech Research and Development Program of ChinaProject(51074179)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20130401160614378,JCYJ20140506150310437)supported by Shenzhen Science and Technology Innovation Basic Research Foundation,China
文摘Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.
基金provided by the National Natural Science Foundation of China (Nos. 50934002 and 51074103)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0950)
文摘Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions. These cultivated bacteria were then used for the leaching process. The changes in solution pH, Eh, Fe2~ concentration, and sulfate ion concentration were monitored throughout the tests. A portion of the pyritic sulfur is transformed into soluble sulfate ion. The desulfur- ization ratio of'42.6g was obtained in a flask shaking test and a ratio of 39.4g was obtained during column leaching. A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days. A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.