In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermol...In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.展开更多
The oil solubility of synthetic oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester(abbreviated as OHTP hereinafter) and its influence on the biodegradability and tribological performance of 400 SN mineral o...The oil solubility of synthetic oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester(abbreviated as OHTP hereinafter) and its influence on the biodegradability and tribological performance of 400 SN mineral oil were investigated on a tester and a four-ball tribotester,respectively,for fast evaluating the biodegradability of lubricants.Furthermore,the morphologies and tribochemical species of the worn surfaces lubricated by OHTP-doped oil were studied by scanning electron microscope(SEM) and X-ray photoelectron spectroscope(XPS).The results indicated that OHTP possessed good oil solubility and could improve obviously the biodegradability,the extreme pressure properties,the anti-wear properties and friction-reducing properties of the 400 SN mineral oil.The analytical results of XPS spectra showed that the composite boundary lubrication films were mainly composed of absorbed films and tribochemical species such as FePO-4,Fe_3(PO_4)_2,Fe_2O_3 and Fe_3O_4,which contributed to improving the tribological performances.展开更多
The effects of the mechanical factors with applied loads on the tribological performance of refined,bleached and deodorised(RBD) palm stearin(PS) were studied using a four-ball tribotester.All the RBD PS results were ...The effects of the mechanical factors with applied loads on the tribological performance of refined,bleached and deodorised(RBD) palm stearin(PS) were studied using a four-ball tribotester.All the RBD PS results were simultaneously compared with the additive-free paraffinic mineral oil(PMO).The experiments were carried out using different loads with a constant speed in order to gain a better understanding of the mechanical processes that occurred during the experiment.For each experiment,the temperature was increased to 75 °C and was run for 1 h.In a mechanical system,lubricant plays an important role in reducing wear and friction.PS exists as a semi-solid at room temperature after the fractionation process from oil palm.Due to the increasing rate of pollution to the environment,vegetable oil was chosen as the test lubricant with regard to its biodegradability.Other advantages of vegetable oil are that it is more easily harvestable and non-toxic compared to petroleum-based oil,which made it a suitable candidate.From the experiment,RBD PS is found to have a better friction constraint reduction compared with additive-free PMO.展开更多
Recently, silicate diagenesis has been the focus of many studies because of its impact on porosity and permeability in sedimentary rocks. In the process of diagenetic evolution, the crystallization, cementation, and c...Recently, silicate diagenesis has been the focus of many studies because of its impact on porosity and permeability in sedimentary rocks. In the process of diagenetic evolution, the crystallization, cementation, and corrosion of zeolite (as a diagenetic mineral) have different effects on properties of Permian reservoirs in the study area. In the Permian sediments in the no,inwestern margin of the Junggar Basin, Zeolite minerals have formed during diagenesis in an open hydrologic system, related to the hydration of abundant volcanic glass. Chemical property of groundwater, pH of pore water, cation property and ratios have directly influenced the transformation among various zeolites and the dissolution of zeolite mineral. The main species of zeolite include analcime, heulandite, and laumontite. Transformations of these minerals during diagenesis are: volcanic glass→ clinoptilolite→analcime→heulandite→laumontite. Corrosion of analcime obviously improved reservoir quality. Extensive heulandite cementation developed and intensively reduced reservoir pore spaces. Early zeolite cementation protected pore structure against compaction and provided substance for late dissolution. The dissolution of analcime was closely related with the organic acid recharged by hydrocarbon source rocks and the NaHCO3 type formation water in the Permian, and was sensitive to permeability of rocks. Within the CaCl2 type formation water, heulandite and laumontite were hardly dissolved. In the study area, the belt with dissolved analcime is the area for the development of secondary pores and favorable reservoirs.展开更多
基金the financial supports from National Key Project of Scientific and Technical Supporting Programs:Enhancing oil displacement efficiency during steamfloods(fund No.2008ZX05012-001)
文摘In order to effectively reduce the viscosity of heavy oil during steam injection, a catalyst system, consisting of reservoir minerals, nickel sulfate, and formic acid, was used to exert catalytic effect on aquathermolysis of heavy crude oil extracted from the Liaohe oilfield. Experimental results indicated that all the reservoir minerals used in the experiment had catalytic effect on aquathermolysis and the oil viscosity reduction rate ranged from 24% to 36% after the aquathermolysis reaction. If nickel sulfate was used as the catalyst and added to the reaction system, the oil viscosity reduction rate could reach 50%. If formic acid was used as the hydrogen donor, the oil viscosity reduction rate could increase further, and could reach up to 71.8%. The aquathermolysis reaction of heavy oil under steam injection condition was affected by the reaction temperature, the reaction time, the dosage of minerals, the catalyst concentration, and the hydrogen donor. The experimental results showed that minerals, catalyst and hydrogen donor could work together to enhance aquathermolysis reaction of heavy oil in the presence of the high-temperature water vapor.
基金the financial support from the National Defense Science Technology Foundation (Project No.3604003)the National Natural Science Foundation of China (Project No.51375491)+1 种基金the Natural Science Foundation of Chongqing (Project No.CSTC,2014JCYJAA50021)the Natural Science Foundation of Chongqing (Project No.cstc2017jcyj AX0058)
文摘The oil solubility of synthetic oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester(abbreviated as OHTP hereinafter) and its influence on the biodegradability and tribological performance of 400 SN mineral oil were investigated on a tester and a four-ball tribotester,respectively,for fast evaluating the biodegradability of lubricants.Furthermore,the morphologies and tribochemical species of the worn surfaces lubricated by OHTP-doped oil were studied by scanning electron microscope(SEM) and X-ray photoelectron spectroscope(XPS).The results indicated that OHTP possessed good oil solubility and could improve obviously the biodegradability,the extreme pressure properties,the anti-wear properties and friction-reducing properties of the 400 SN mineral oil.The analytical results of XPS spectra showed that the composite boundary lubrication films were mainly composed of absorbed films and tribochemical species such as FePO-4,Fe_3(PO_4)_2,Fe_2O_3 and Fe_3O_4,which contributed to improving the tribological performances.
基金Project supported by the Research University Grant from Universiti Teknologi Malaysia (No. 00J02)the Fundamental Research Grant Scheme from the Ministry of Higher Education (MOHE) (No. 78604)the E-Science Grant from the Ministry of Science,Technology and Innovation of Malaysia (No. 79396)
文摘The effects of the mechanical factors with applied loads on the tribological performance of refined,bleached and deodorised(RBD) palm stearin(PS) were studied using a four-ball tribotester.All the RBD PS results were simultaneously compared with the additive-free paraffinic mineral oil(PMO).The experiments were carried out using different loads with a constant speed in order to gain a better understanding of the mechanical processes that occurred during the experiment.For each experiment,the temperature was increased to 75 °C and was run for 1 h.In a mechanical system,lubricant plays an important role in reducing wear and friction.PS exists as a semi-solid at room temperature after the fractionation process from oil palm.Due to the increasing rate of pollution to the environment,vegetable oil was chosen as the test lubricant with regard to its biodegradability.Other advantages of vegetable oil are that it is more easily harvestable and non-toxic compared to petroleum-based oil,which made it a suitable candidate.From the experiment,RBD PS is found to have a better friction constraint reduction compared with additive-free PMO.
基金supported by National Basic Research Program of China(Grant No. 2006CB202306)
文摘Recently, silicate diagenesis has been the focus of many studies because of its impact on porosity and permeability in sedimentary rocks. In the process of diagenetic evolution, the crystallization, cementation, and corrosion of zeolite (as a diagenetic mineral) have different effects on properties of Permian reservoirs in the study area. In the Permian sediments in the no,inwestern margin of the Junggar Basin, Zeolite minerals have formed during diagenesis in an open hydrologic system, related to the hydration of abundant volcanic glass. Chemical property of groundwater, pH of pore water, cation property and ratios have directly influenced the transformation among various zeolites and the dissolution of zeolite mineral. The main species of zeolite include analcime, heulandite, and laumontite. Transformations of these minerals during diagenesis are: volcanic glass→ clinoptilolite→analcime→heulandite→laumontite. Corrosion of analcime obviously improved reservoir quality. Extensive heulandite cementation developed and intensively reduced reservoir pore spaces. Early zeolite cementation protected pore structure against compaction and provided substance for late dissolution. The dissolution of analcime was closely related with the organic acid recharged by hydrocarbon source rocks and the NaHCO3 type formation water in the Permian, and was sensitive to permeability of rocks. Within the CaCl2 type formation water, heulandite and laumontite were hardly dissolved. In the study area, the belt with dissolved analcime is the area for the development of secondary pores and favorable reservoirs.