Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to ...Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size,sulfuric acid concentration,pressure,reaction time and temperature on the extraction of zinc and the dissolution of silica.Under the optimum conditions employed,up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained.The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron,lead and aluminum are associated with quartz.展开更多
Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids wer...Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids were used for the preparation of leach solutions. The results show that phosphorus occurring as apatite phase could be removed by alkali-leaching, but those occurring in the iron phase could not. Sulfuric acid is the most effective among the three kinds of acid. 91.61% phosphorus removal was attained with 1% sulfuric acid after leaching for 20 rain at room temperature. Iron loss during acid-leaching can be negligible, which was less than 0.25%.The pH value of solution after leaching with1% sulfuric acid was about 0.86, which means acid would not be exhausted during the process and it could be recycled, and the recycle of sulfuric acid solution would make the dephosphorization process more economical.展开更多
An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investiga...An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investigated in an ore/HF/H2SO4 ratio of 1:3:2 g:mL:mL with leaching temperature ranging from 50 to 100°C.The results indicate that the leaching kinetics of Li fitted well with a model based on the shrinking core model.In addition,the leaching rate of Li was controlled by chemical reactions and diffusion through the product layers.The apparent activation energy Ea was calculated to be 32.68 kJ/mol.Solid films were formed because of the generation of insoluble products such as cryolithionite(Na3Li2Al2F12),cryolite(Na3AlF6),calcium fluoride(CaF2),potassium cryolite(K2AlF5),aluminum fluoride(AlF3),and fluorosilicates(Na2SiF6 or KNaSiF6).Furthermore,the effects of the ore/HF ratio and leaching temperature on the leaching behavior of Li,Al and Si were investigated.The results indicate that the ore/HF ratio and leaching temperature could clearly affect the distribution of HF molecules on the leaching of Li,Al and Si,which are important for the selective leaching of Li over Al and Si with this fluorine-based chemical method.展开更多
The removal of iron from an Indian diaspore sample was studied using magnetic separation and leaching techniques aided by an in-depth mineralogical characterization study involving quantitative mineralogical evaluatio...The removal of iron from an Indian diaspore sample was studied using magnetic separation and leaching techniques aided by an in-depth mineralogical characterization study involving quantitative mineralogical evaluation by scanning electron microscope(QEMSCAN), electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The characterization studies indicate that extremely fine-sized hematite grains are associated with several other mineral phases in a complex manner with around 60% of the hematite not liberated even below the size of 38 μm limiting the scope of physical separation processes to remove the iron. Wet high intensity magnetic separation(WHIMS) studies reveal that only 49% of iron can be removed. Further, leaching studies using oxalic acid suggest that around 76% of the iron can be removed under conditions such as a solid to liquid ratio of 0.05:1, a temperature of 90 ℃ a time period of 120 min and an acid concentration of 1 mol/L. The dissolution of iron in oxalic acid is found to be controlled by chemical reaction and the activation energy is calculated as 35.15 k J/mol.展开更多
Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction r...Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.展开更多
Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracit...Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10%(mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3 in the raw ore are reduced to MnO and Fe3O4, respectively.展开更多
The production of dump leaching of the Dexing Copper Mine was affected by a preferential solution flow. Formative mechanism of the preferential solution flow was investigated by analyzing the relationship between both...The production of dump leaching of the Dexing Copper Mine was affected by a preferential solution flow. Formative mechanism of the preferential solution flow was investigated by analyzing the relationship between both dump permeability and surface tension and ore diameter. The preferential solution flow occured in the fine ore area when the application rate was low. The preferential solution flow entered into the coarse ore area because the negative pore water pressure disappeared with an increase of the application rate. The preferential solute transportation experiment was conducted by selecting NaCl as mineral. Results of the experiment showed that the concentration of the outflow solution reduced over time. The concentration of the coarse ore area outflow solution was greater than that of the fine ore area. The process of NaCl leaching can be divided into two stages. NaCl was carried out directly by diffusion--convection during the first stage, so the leaching rate increased sharply. But in the second stage, only a small amount of NaCl dissolved in the immobile water. The leaching rate increased slowly because NaC1, dissolved in the immobile water, can only be leached by diffusion.展开更多
For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to...For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.展开更多
The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concen...The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.展开更多
The presented results are related to the leaching of Pb-Zn-Cu-Fe sulphide concentrate, obtained from barite-sulphide ores, under the elevated temperatures and pressures in an autoclave. The leaching process was perfor...The presented results are related to the leaching of Pb-Zn-Cu-Fe sulphide concentrate, obtained from barite-sulphide ores, under the elevated temperatures and pressures in an autoclave. The leaching process was performed using the sulphur acid solution with the oxygen addition for the separation of the targeted metals from the polymetallic concentrate. In this process influences of various parameters were discussed and then correlated to the leached metals, zinc, copper and iron. Zinc, copper and iron were dissolved in a solution, while lead remained as insoluble in the leach residue. The best leaching results were determined under the temperature of 210 ℃ during the 240 min. Obtained leaching degrees were 98% zinc, 95% copper and 96% iron.展开更多
Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The l...Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions. These cultivated bacteria were then used for the leaching process. The changes in solution pH, Eh, Fe2~ concentration, and sulfate ion concentration were monitored throughout the tests. A portion of the pyritic sulfur is transformed into soluble sulfate ion. The desulfur- ization ratio of'42.6g was obtained in a flask shaking test and a ratio of 39.4g was obtained during column leaching. A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days. A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.展开更多
基金Project(2007CB613605) supported by the National Basic Research Program of China
文摘Zinc silicate ore was characterized mineralogically and the results showed that zinc exists mainly as hemimorphite and smithsonite in the sample.Sulfuric acid pressure leaching of zinc silicate ore was carried out to assess the effect of particle size,sulfuric acid concentration,pressure,reaction time and temperature on the extraction of zinc and the dissolution of silica.Under the optimum conditions employed,up to 99.25% of zinc extraction and 0.20% silica dissolution are obtained.The main minerals in leaching residue are quartz and small amounts of undissolved oxide minerals of iron,lead and aluminum are associated with quartz.
基金Project (50321402) supported by the National Natural Science Foundation of China project(2004CB619204) supported by Major State Basic Research Development Program of China
文摘Alkali-leaching and acid-leaching were proposed for the dephosphorization of Changde iron ore, which contains an average of 1.12% for phosphorus content. Sodium hydroxide, sulfuriced, hydrochloric and nitric acids were used for the preparation of leach solutions. The results show that phosphorus occurring as apatite phase could be removed by alkali-leaching, but those occurring in the iron phase could not. Sulfuric acid is the most effective among the three kinds of acid. 91.61% phosphorus removal was attained with 1% sulfuric acid after leaching for 20 rain at room temperature. Iron loss during acid-leaching can be negligible, which was less than 0.25%.The pH value of solution after leaching with1% sulfuric acid was about 0.86, which means acid would not be exhausted during the process and it could be recycled, and the recycle of sulfuric acid solution would make the dephosphorization process more economical.
基金Project(51474237) supported by the National Natural Science Foundation of China
文摘An enhanced leaching of Li fromα-spodumene was carried out using a mixture of hydrofluoric and sulfuric acid(HF/H2SO4)as the medium.Based on the optimized leaching conditions,the leaching kinetics of Li was investigated in an ore/HF/H2SO4 ratio of 1:3:2 g:mL:mL with leaching temperature ranging from 50 to 100°C.The results indicate that the leaching kinetics of Li fitted well with a model based on the shrinking core model.In addition,the leaching rate of Li was controlled by chemical reactions and diffusion through the product layers.The apparent activation energy Ea was calculated to be 32.68 kJ/mol.Solid films were formed because of the generation of insoluble products such as cryolithionite(Na3Li2Al2F12),cryolite(Na3AlF6),calcium fluoride(CaF2),potassium cryolite(K2AlF5),aluminum fluoride(AlF3),and fluorosilicates(Na2SiF6 or KNaSiF6).Furthermore,the effects of the ore/HF ratio and leaching temperature on the leaching behavior of Li,Al and Si were investigated.The results indicate that the ore/HF ratio and leaching temperature could clearly affect the distribution of HF molecules on the leaching of Li,Al and Si,which are important for the selective leaching of Li over Al and Si with this fluorine-based chemical method.
文摘The removal of iron from an Indian diaspore sample was studied using magnetic separation and leaching techniques aided by an in-depth mineralogical characterization study involving quantitative mineralogical evaluation by scanning electron microscope(QEMSCAN), electron probe micro-analyzer(EPMA) and X-ray diffraction(XRD). The characterization studies indicate that extremely fine-sized hematite grains are associated with several other mineral phases in a complex manner with around 60% of the hematite not liberated even below the size of 38 μm limiting the scope of physical separation processes to remove the iron. Wet high intensity magnetic separation(WHIMS) studies reveal that only 49% of iron can be removed. Further, leaching studies using oxalic acid suggest that around 76% of the iron can be removed under conditions such as a solid to liquid ratio of 0.05:1, a temperature of 90 ℃ a time period of 120 min and an acid concentration of 1 mol/L. The dissolution of iron in oxalic acid is found to be controlled by chemical reaction and the activation energy is calculated as 35.15 k J/mol.
基金Project(51374248) supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by Program for New Century Excellent Talents in University,China+1 种基金Project(2012AA061501) supported by the National High Technology Research and Development Program of ChinaProject(20120162120010) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns.The results show that bioleaching of jamesonite is not accessible,the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d,and the zinc extraction rate of marmatite bioleaching reaches 92.3%,while the corresponding iron extraction reaches only 13.6% after 29 d.Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching.The corresponding metal extraction rate decreases with the increase of pulp density.For the polymetallic sulfide ores,zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d,while only 7.8% is obtained after bioleaching in small-scaled column.Analytical results of scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.
基金Project(2013JSJJ028)supported by the Teachers’Research Fund of Central South University,ChinaProject supported by Co-Innovation Center for Clean and Efficient Utilization of Strategic Mineral Resources,China
文摘Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10%(mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3 in the raw ore are reduced to MnO and Fe3O4, respectively.
基金Project 50325415 supported by the National Science Fund for Distinguished Young Scholars, 50574099 and 50321402 by the National Natural ScienceFoundation of China and 2004CB619205 by the National Key Fundamental Research and Development Program
文摘The production of dump leaching of the Dexing Copper Mine was affected by a preferential solution flow. Formative mechanism of the preferential solution flow was investigated by analyzing the relationship between both dump permeability and surface tension and ore diameter. The preferential solution flow occured in the fine ore area when the application rate was low. The preferential solution flow entered into the coarse ore area because the negative pore water pressure disappeared with an increase of the application rate. The preferential solute transportation experiment was conducted by selecting NaCl as mineral. Results of the experiment showed that the concentration of the outflow solution reduced over time. The concentration of the coarse ore area outflow solution was greater than that of the fine ore area. The process of NaCl leaching can be divided into two stages. NaCl was carried out directly by diffusion--convection during the first stage, so the leaching rate increased sharply. But in the second stage, only a small amount of NaCl dissolved in the immobile water. The leaching rate increased slowly because NaC1, dissolved in the immobile water, can only be leached by diffusion.
基金Projects(51374248,51320105006) supported by National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692) supported by the China Postdoctoral Science Foundation
文摘For the low-grade copper sulfide ores with 0.99% of copper, of which 41.5% was primary copper sulfide, and 54.5% was secondary copper sulfide, well-controlled column bioleaching on a novel equipment was carried out to investigate the optimal conditions of pre-leaching, particle sizes of ores, temperature, spray intensity and strain consortium. Results show that copper extraction of 91.11% can be obtained after 90 d with the optimal p H value of pre-leaching of 0.8; the p H values of pre-leaching significantly affect the final copper extractions. Copper extractions of 93.11%, 91.04% and 80.45% can be obtained for the bioleaching of ores with particles size of 5-8 mm, 5-15 mm and 5-20 mm, respectively. Copper extractions are 83.77% and 91.02% for bioleaching under the conditions of room temperature and 35 oC. Copper extractions are 77.25%, 85.45% and 91.12% for the bioleaching when flow rate of spray was 5 L/(h·m2), 10 L/(h·m2) and 15 L/(h·m2), respectively. Additionally, the strain consortium C3 is the best among the four strain consortia in bioleaching. By considering the energy consumption, the optimal conditions of bioleaching in this work are determined as p H of pre-leaching of 0.8, particles size of 5-15 mm, temperature of 35 ℃, spray intensity of 15 L/(h·m2), and strain consortium C3.
基金Project(51364009) supported by the National Natural Science Foundation of ChinaProject(JSU071302) supported by the Construct Program of the Key Discipline in Hunan Province,ChinaProject(2015JJ2115) supported by the Natural Science Foundation of Hunan Province,China
文摘The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied.The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 k J/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as1-(1-a)1/3=3405.7exp[-41030.0/(RT)]t.
文摘The presented results are related to the leaching of Pb-Zn-Cu-Fe sulphide concentrate, obtained from barite-sulphide ores, under the elevated temperatures and pressures in an autoclave. The leaching process was performed using the sulphur acid solution with the oxygen addition for the separation of the targeted metals from the polymetallic concentrate. In this process influences of various parameters were discussed and then correlated to the leached metals, zinc, copper and iron. Zinc, copper and iron were dissolved in a solution, while lead remained as insoluble in the leach residue. The best leaching results were determined under the temperature of 210 ℃ during the 240 min. Obtained leaching degrees were 98% zinc, 95% copper and 96% iron.
基金provided by the National Natural Science Foundation of China (Nos. 50934002 and 51074103)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0950)
文摘Bio-leaching of pyrite by native strains of acidophilic bacteria was examined by laboratory scale tests. Three groups of batch trials in agitated flasks and three continuous column leaching tests were performed. The leaching ability and efficiency of native bacteria was greatly improved by adaptation of the bacteria to the test conditions. These cultivated bacteria were then used for the leaching process. The changes in solution pH, Eh, Fe2~ concentration, and sulfate ion concentration were monitored throughout the tests. A portion of the pyritic sulfur is transformed into soluble sulfate ion. The desulfur- ization ratio of'42.6g was obtained in a flask shaking test and a ratio of 39.4g was obtained during column leaching. A weight gain test was performed on leached and unleached samples by exposing the samples to humid air for several days. A smaller weight gain of the bio-leached samples indicates that removing sulfur from the sulphide ore helps reduce its oxidation rate and the potential for spontaneous combustion.