通过北斗三号精密单点定位服务信号(Precise Point Positioning B2b,PPP-B2b)差分码偏差(Differential Code Biases,DCB)对实时非组合精密单点定位(Uncombined Precise Point Positioning,UPPP)解算参数的影响进行研究。基于PPP-B2b服务...通过北斗三号精密单点定位服务信号(Precise Point Positioning B2b,PPP-B2b)差分码偏差(Differential Code Biases,DCB)对实时非组合精密单点定位(Uncombined Precise Point Positioning,UPPP)解算参数的影响进行研究。基于PPP-B2b服务的UPPP模型,分析了DCB对UPPP定位、收敛时间、对流层、钟差及斜向电离层解算的影响。在非组合模型下,采用北斗三号PPP-B2b实时精密单点定位(Real-Time Precise Point Positioning B2b,RTPPP-B2b)软件对接收机实测数据进行实验分析。实验结果表明:载波与伪距观测值权比为103∶1时,DCB对定位精度和收敛时间影响均较小,载波与伪距观测值权比为102∶1时,无DCB校正的UPPP定位误差收敛时间会变长;DCB对解算对流层天顶总延迟的影响可以忽略,对接收机钟差影响在亚纳秒级别;在使用UPPP提取斜向电离层过程中,DCB主要影响斜向电离层的计算精度。展开更多
联合双频GPS数据,利用相位平滑伪距算法,可得到包含斜向电离层总电子含量(slant total electron content,sTEC)、测站和卫星差分码偏差(differential code bias,DCB)的电离层观测值(称之为"平滑伪距电离层观测值"),常应用于...联合双频GPS数据,利用相位平滑伪距算法,可得到包含斜向电离层总电子含量(slant total electron content,sTEC)、测站和卫星差分码偏差(differential code bias,DCB)的电离层观测值(称之为"平滑伪距电离层观测值"),常应用于与电离层有关的研究。然而,平滑伪距电离层观测值易受平滑弧段长度和与测站有关的误差影响。提出一种新算法:利用非组合精密单点定位技术(precise point positioning,PPP)计算电离层观测值(称之为"PPP电离层观测值"),进而估计sTEC和站星DCB。基于短基线试验,先用一台接收机按上述两种方法估计sTEC,用于改正另一接收机观测值的电离层延迟以实施单频PPP,结果表明,利用PPP电离层观测值得到的sTEC精度较高,定位结果的可靠性较强。随后,选取全球分布的8个IGS(internationalGNSS service)连续跟踪站2009年1月内某四天的观测数据,利用上述两种电离层观测值计算所有卫星的DCB,并将计算结果与CODE发布的月平均值进行比较,其中,平滑伪距电离层观测值的卫星DCB估值与CODE(Centre for Orbit Deter mination in Europe)发布值的差别较大,部分卫星甚至可达0.2~0.3 ns,而PPP电离层观测值而言,绝大多数卫星对应的差异均在0.1 ns以内。展开更多
仪器偏差是利用GPS观测资料确定总电子含量(Total Electron Content,TEC)的主要误差源之一,接收机P1和P2的仪器偏差称为差分码偏差。探讨了利用GPS资料计算接收机差分码偏差的算法,并进行了软件实现。实际观测数据的结果初步验证了算法...仪器偏差是利用GPS观测资料确定总电子含量(Total Electron Content,TEC)的主要误差源之一,接收机P1和P2的仪器偏差称为差分码偏差。探讨了利用GPS资料计算接收机差分码偏差的算法,并进行了软件实现。实际观测数据的结果初步验证了算法的正确性。展开更多
文摘通过北斗三号精密单点定位服务信号(Precise Point Positioning B2b,PPP-B2b)差分码偏差(Differential Code Biases,DCB)对实时非组合精密单点定位(Uncombined Precise Point Positioning,UPPP)解算参数的影响进行研究。基于PPP-B2b服务的UPPP模型,分析了DCB对UPPP定位、收敛时间、对流层、钟差及斜向电离层解算的影响。在非组合模型下,采用北斗三号PPP-B2b实时精密单点定位(Real-Time Precise Point Positioning B2b,RTPPP-B2b)软件对接收机实测数据进行实验分析。实验结果表明:载波与伪距观测值权比为103∶1时,DCB对定位精度和收敛时间影响均较小,载波与伪距观测值权比为102∶1时,无DCB校正的UPPP定位误差收敛时间会变长;DCB对解算对流层天顶总延迟的影响可以忽略,对接收机钟差影响在亚纳秒级别;在使用UPPP提取斜向电离层过程中,DCB主要影响斜向电离层的计算精度。
文摘电离层延迟是GNSS导航定位中重要的误差源,对电离层进行监测和建模具有重要的意义。GNSS具有覆盖范围广、观测时间长、反演精度高等特点,为电离层监测和建模提供了一种有效的手段。差分码偏差(differential code bias,DCB)包含在电离层观测值中,与电离层总电子含量(total electron content,TEC)参数相互耦合,在电离层建模时需要被精确分离和确定。
文摘联合双频GPS数据,利用相位平滑伪距算法,可得到包含斜向电离层总电子含量(slant total electron content,sTEC)、测站和卫星差分码偏差(differential code bias,DCB)的电离层观测值(称之为"平滑伪距电离层观测值"),常应用于与电离层有关的研究。然而,平滑伪距电离层观测值易受平滑弧段长度和与测站有关的误差影响。提出一种新算法:利用非组合精密单点定位技术(precise point positioning,PPP)计算电离层观测值(称之为"PPP电离层观测值"),进而估计sTEC和站星DCB。基于短基线试验,先用一台接收机按上述两种方法估计sTEC,用于改正另一接收机观测值的电离层延迟以实施单频PPP,结果表明,利用PPP电离层观测值得到的sTEC精度较高,定位结果的可靠性较强。随后,选取全球分布的8个IGS(internationalGNSS service)连续跟踪站2009年1月内某四天的观测数据,利用上述两种电离层观测值计算所有卫星的DCB,并将计算结果与CODE发布的月平均值进行比较,其中,平滑伪距电离层观测值的卫星DCB估值与CODE(Centre for Orbit Deter mination in Europe)发布值的差别较大,部分卫星甚至可达0.2~0.3 ns,而PPP电离层观测值而言,绝大多数卫星对应的差异均在0.1 ns以内。