为改善视频监控中的背景建模方法对于前景目标物较多或者光线变化的复杂环境效果不太理想的缺陷,提出一种多级分块背景建模方法.该方法以间隔N帧帧差法为基础,采用多级分块,并结合对称二值模式(center-symmetric local binary pattern,C...为改善视频监控中的背景建模方法对于前景目标物较多或者光线变化的复杂环境效果不太理想的缺陷,提出一种多级分块背景建模方法.该方法以间隔N帧帧差法为基础,采用多级分块,并结合对称二值模式(center-symmetric local binary pattern,CSLBP)和码本(codebook,CB)等算法建立背景模型.通过模型得出背景较为清晰和完整,为下一步进行前景目标的准确识别提供良好基础.采用设计实验检验该方法的有效性,将其与局部二值模式(local binary pattern,LBP)、CSLBP、CB以及经典的混合高斯背景建模(mixture of Gaussian,MOG)等算法进行对比分析,得出采用此方法提取的前景目标物更加完整,边界更加清晰,且无明显分块图形出现.采用评分的方法对几种方法进行综合评分,该方法评分较高.在对前景目标物的提取方法中,该方法效果较好.展开更多
Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines ...Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines coverage on specified values, and make variances of group distances among N-Window text lines become small. Inspired by the discovery, the research brings out a Support Vector Machine (SVM) based steganalysis algorithm. To avoid the disturbance of large difference among words length from same line, the research only reserves samples whose occurrence-frequencies are ± 10dB of the maximum frequency. The results show that the correct rate of the SVM classifier is higher than 90%.展开更多
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis...Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.展开更多
文摘为改善视频监控中的背景建模方法对于前景目标物较多或者光线变化的复杂环境效果不太理想的缺陷,提出一种多级分块背景建模方法.该方法以间隔N帧帧差法为基础,采用多级分块,并结合对称二值模式(center-symmetric local binary pattern,CSLBP)和码本(codebook,CB)等算法建立背景模型.通过模型得出背景较为清晰和完整,为下一步进行前景目标的准确识别提供良好基础.采用设计实验检验该方法的有效性,将其与局部二值模式(local binary pattern,LBP)、CSLBP、CB以及经典的混合高斯背景建模(mixture of Gaussian,MOG)等算法进行对比分析,得出采用此方法提取的前景目标物更加完整,边界更加清晰,且无明显分块图形出现.采用评分的方法对几种方法进行综合评分,该方法评分较高.在对前景目标物的提取方法中,该方法效果较好.
基金the National Natural Science Foundation of China under Grant No.61170269,No.61170272,No.61202082,No.61003285,and the Fundamental Research Funds for the Central Universities under Grant No.BUPT2013RC0308,No.BUPT2013RC0311
文摘Group distance coding is suitable for secret communication covered by printed documents. However there is no effective method against it. The study found that the hiding method will make group distances of text lines coverage on specified values, and make variances of group distances among N-Window text lines become small. Inspired by the discovery, the research brings out a Support Vector Machine (SVM) based steganalysis algorithm. To avoid the disturbance of large difference among words length from same line, the research only reserves samples whose occurrence-frequencies are ± 10dB of the maximum frequency. The results show that the correct rate of the SVM classifier is higher than 90%.
基金Project(61172047)supported by the National Natural Science Foundation of China
文摘Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy.