Timing and carrier frequency offset estimation are critical issue for OFDM cooperative communications. In view of the complexity and high accuracy requirement, 1/2 and 1/4 pilot symbol cycle CAZAC sequence structures ...Timing and carrier frequency offset estimation are critical issue for OFDM cooperative communications. In view of the complexity and high accuracy requirement, 1/2 and 1/4 pilot symbol cycle CAZAC sequence structures are defined as the pilot frequency sequence. Estimation within one symbol cycle is carried out through averaging samples of two neighboring symbol cycles, after which the operation is expanded to all the symbol cycles in one band group. Taking multipath effect into account, the concept of phase rotation is proposed for a further step. Adjust the phase difference of estimated symbols by phase rotation, and cross estimation could be done. Meanwhile, timing scheme works within one cycle training sequence. Theoretical and simulation analysis indicate that CRLB does not only relate to estimation symbol length, but also be influenced by phase difference of estimation symbols seriously. In the condition that the length of estimation is fixed, the bigger the phase rotation angle is, the smaller the CRLB is. The complexity of proposed algorithm is less than full cycle average estimation method for almost 50%. Meanwhile, the estimation accuracy is approximate with the full cycle average estimation method as well. Timing scheme with the defined preamble structure is also proposed. Simulation proves its efficiency.展开更多
As one of the most important components of the wideband wireless access technique, orthogonal frequency division multiplexing (OFDM) has a high usage rate of spectrum and combats inter-symbol interference (ISI) in...As one of the most important components of the wideband wireless access technique, orthogonal frequency division multiplexing (OFDM) has a high usage rate of spectrum and combats inter-symbol interference (ISI) in multi-path fading channel. However, when there are frequency offsets during the signal transmission, the inter-carrier interference (ICI) is introduced, which significantly degrades the performance. The existing ICI self-cancellation schemes such as PCC-OFDM are not optimum to minimize the interference considering both noise and ICI. In this paper, a new metric named S1NR (signal-to-interference- and-noise ratio) is proposed. We discuss the optimization issue when a constant frequency offset exists and in time-varying channels. The optimum weighting-coefficient-pair (OWCP) is obtained, which maximizes SINR theoretically through the alternant iteration algorithm. Simulations show that the performance of OWCP-OFDM is better than that of PCC-OFDM, especially when the frequency offset is large. Although the ICI self-cancellation scheme suffers bandwidth inefficiency, from the simulation results we can also see that the performance of OWCP-OFDM is much better than that of the standard OFDM systems with the same bandwidth efficiency when a frequency offset exists. Moreover, since the redundant modulation provides the capability to suppress ICI as well as a receiving SNR gain, it can be considered as exchanging the bandwidth for SNR.展开更多
基金supported by the National Natural Science Foundation of China (No. 61371092 , No. 61401175)the Doctoral Fund of Ministry of Education of China (No. 20130061120062)the China Postdoctoral Science Foundation (No. 2014M551184)
文摘Timing and carrier frequency offset estimation are critical issue for OFDM cooperative communications. In view of the complexity and high accuracy requirement, 1/2 and 1/4 pilot symbol cycle CAZAC sequence structures are defined as the pilot frequency sequence. Estimation within one symbol cycle is carried out through averaging samples of two neighboring symbol cycles, after which the operation is expanded to all the symbol cycles in one band group. Taking multipath effect into account, the concept of phase rotation is proposed for a further step. Adjust the phase difference of estimated symbols by phase rotation, and cross estimation could be done. Meanwhile, timing scheme works within one cycle training sequence. Theoretical and simulation analysis indicate that CRLB does not only relate to estimation symbol length, but also be influenced by phase difference of estimation symbols seriously. In the condition that the length of estimation is fixed, the bigger the phase rotation angle is, the smaller the CRLB is. The complexity of proposed algorithm is less than full cycle average estimation method for almost 50%. Meanwhile, the estimation accuracy is approximate with the full cycle average estimation method as well. Timing scheme with the defined preamble structure is also proposed. Simulation proves its efficiency.
基金Project (No. 2006AA01Z273) supported by the Hi-Tech ResearchDevelopment Program (863) of China
文摘As one of the most important components of the wideband wireless access technique, orthogonal frequency division multiplexing (OFDM) has a high usage rate of spectrum and combats inter-symbol interference (ISI) in multi-path fading channel. However, when there are frequency offsets during the signal transmission, the inter-carrier interference (ICI) is introduced, which significantly degrades the performance. The existing ICI self-cancellation schemes such as PCC-OFDM are not optimum to minimize the interference considering both noise and ICI. In this paper, a new metric named S1NR (signal-to-interference- and-noise ratio) is proposed. We discuss the optimization issue when a constant frequency offset exists and in time-varying channels. The optimum weighting-coefficient-pair (OWCP) is obtained, which maximizes SINR theoretically through the alternant iteration algorithm. Simulations show that the performance of OWCP-OFDM is better than that of PCC-OFDM, especially when the frequency offset is large. Although the ICI self-cancellation scheme suffers bandwidth inefficiency, from the simulation results we can also see that the performance of OWCP-OFDM is much better than that of the standard OFDM systems with the same bandwidth efficiency when a frequency offset exists. Moreover, since the redundant modulation provides the capability to suppress ICI as well as a receiving SNR gain, it can be considered as exchanging the bandwidth for SNR.