Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resol...Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.展开更多
Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resis...Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.展开更多
Flash floods result from a complex interaction among hydro-meteorological, hydrological, and hydraulic processes across various spatial and temporal scales. Sichuan Province suffers flash floods frequently owing to mo...Flash floods result from a complex interaction among hydro-meteorological, hydrological, and hydraulic processes across various spatial and temporal scales. Sichuan Province suffers flash floods frequently owing to mountain weather and topography. A flash flood and gravel bed load transport are two key relative problems in mountain river engineering. Bed materials are often encountered in alternate scouring and deposition in mountain fluvial processes during a flash flood. In this circumstance, CRS-1 bed load numerical model jointly with scale physical model is employed to predict water level and gravel bed scour and deposition for design of flood control dykes and flash flood disaster mitigation. A case study on the mechanism of a flash flood disaster induced by bed load transport for a hydropower station in Sichuan Province is conducted. Finally, suggestions to protect the hydropower station are proposed.展开更多
The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by t...The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.展开更多
Research samples were taken from an ancient gravel stratum which is not only a representative soil layer along the middle-lower reaches of the Yangtze River in East China, but also one of the primary Neozoic strata in...Research samples were taken from an ancient gravel stratum which is not only a representative soil layer along the middle-lower reaches of the Yangtze River in East China, but also one of the primary Neozoic strata in Naming district. Located mostly on the second and third terraces, the ancient gravel strata formed the geomorphic landscapes of terrace and step. They were complex in constitution, varied widely in stability, of multiple sources, locally derived, and associated with braided streams in the deposition environment. A CIPW (Cross, Iddings, Pirsson and Washington) method modified by the author was used to analyze the soil-rock-forming materials of finer grains (less than 2 mm in size) of the ancient gravel stratum. Results of the analysis showed that the sandy grains were composed of apatite, ilmenite, potassium feldspar, plagioclase, enstatite and free quartz, the clay mainly of kaolinite, and the cement of a combination of silicon, aluminum and iron at a ratio of 46:44:10. In the soil-rock-forming processes, including compactional solidification, water-stable illuviation-cementation t homogeneous overgrowth and so on, the loose soil-rock-forming components gradually changed into consolidated soil and further to the early stage of lithification. Meanwhile, from the analysis, we found that the ancient gravel stratum had been protected by the overlying Xiashu loess or basalt and the overloading resulted in overconsolidated strata. The modified CIPW method was applicable and effective for semi-quantitative analysis.展开更多
Exploration on reservoir of glutenite segment in steep slope zone of half graben-like basin is one of the hot spot targets at present and in the future for new reservoirs; And the study of sediment character of sandy-...Exploration on reservoir of glutenite segment in steep slope zone of half graben-like basin is one of the hot spot targets at present and in the future for new reservoirs; And the study of sediment character of sandy-conglomerate bodies is the keystone and also the difficult problem. Taking Tuo-147-well area in north zone of Dongying depression as an example, the micro-canal sedimentation was researched. The result shows that many micro-canals exist at the end of slope grain-flow in steep slope zone of half graben-like basin; The micro-canals grow at the end of subaqueous grain-flow deposited bodies of 3rd member of the Shahejie formation. The main condition of micro-canal formation is the slope angle less than 18° and a long suitable sedimentary slope. These micro-canals may communicate the reservoir of glutenite segment in steep slope zone and the hydrocarbon stratum as a bridge role. Therefore, it is significant in theory and practice for discovering a series of micro-canals at the end of slope grain-flow in steep slope zone of half graben-like basin.展开更多
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C...Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.展开更多
The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, ne...The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, near sources and intensive tectonic activity. This work was focused on the sedimentary feature of the glutenite segment to conduct the seismic sedimentology research. The near-shore subaqueous fans and its relative gravity channel and slump turbidite fan depositions were identified according to observation and description of cores combining with the numerous data of seismic and logging. Then, the depositional model was built depending on the analysis of palaeogeomorphology. The seismic attributes which are related to the hydrocarbon but relative independent were chosen to conduct the analysis, the reservoir area of the glutenite segment was found performing a distribution where the amplitude value is relatively higher, and finally the RMS amplitude attribute was chosen to conduct the attribute predicting. At the same time, the horizontal distribution of the sedimentary facies was analyzed qualitatively. At last, the sparse spike inversion method was used to conduct the acoustic impedance inversion, and the inversion result can distinguish glutenite reservoir which is greater than 5 m. This method quantitatively characterizes the distribution area of the favorable reservoir sand.展开更多
Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior o...Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior of hydraulic fractures in these glutenite reservoirs,the geological feature of reservoirs in Bohai Bay Basin is studied firstly,including the reservoir vertical distribution feature and the heterogeneous lithology.Then,hydraulic fracturing treatments in block Yan 222 are carried out and the fracturing processes are monitored by the microseismic system.Results show the hydraulic fractures generated in the reservoirs are mostly in X shape.The cause of X-shaped hydraulic fractures in this study is mainly ascribed to(I)the reservoir heterogeneity and(II)the stress shadow effect of two close hydraulic fractures propagating in the same orientation,which is confirmed by the following numerical simulation and related research in detail.This study can provide a reference for the research on the fracturing behavior of the deep thick glutenite reservoirs.展开更多
Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digg...Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digging reef rock close to the edge of the wide ocean reef flat without surface loose sediments on it or sand beach can be accepted. Excavating sand from some depths in lagoon is a scientific approach particularly important for urbanized atolls. However, selecting appropriate sites for mining sand other than at some depths in lagoon is suitable to rural islands without dense populations. These sites include up drift side of long groin on the reef flat, partly filled access channel-port, outlet of artificial channel and lagoon margin on the prograding coast.展开更多
Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.H...Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.How to assess and control the deformation of the ground is the main purpose of the soil reinforcement technology.Grouting is a method commonly used to meet those requirements.This study is designed to investigate the effects on shield construction in the sand-gravel stratum.展开更多
Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spo...Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spot imaging, field validating and chronology research of the research area. Studies suggest that the middle part of Kouquan fault has had strong activity since the late Quaternary which controls the tectonic evolvement of the nearby mountains and Datong basin. The recent activity of this fault has faulted the sandy gravel layers of T1 terrace and the lower part of dark loessial soils over the terrace on the north of Chanfang village. The maximum vertical displacement is over 3m in the area between Xiaoyukou village and Louzikou village, and to the south of Dayukou village and the north of Emaokou village, the displacement decreases to 0.5m and 0.25m respectively. Based on the recent faulted landforms and combined with dating, we determined the age of recent activity of the fault in the research area to be between 7.71ka B.P. to 3.00 ka B.P. Discussions are made on this in combination with previous research.展开更多
基金sponsored by the 973 Program(Grant No.2006CB202306)Open Fund of the State Key Laboratory of Petroleum Resource and Prospecting(Grant No.PRPDX2008-07)
文摘Seismic sedimentology is the study of sedimentary rocks and facies using seismic data. However, often the sedimentary body features can't be described quantitatively due to the limit of seismic resolution. High resolution inversion offsets this limitation and is applied to seismic sedimentology to identify subtle traps under complex geologic conditions, thereby widening the applicable range of seismic sedimentology. In this paper, based on seismic sedimentology, seismic phase-controlled nonlinear random inversion is used to predict the sandy conglomerate reservoir of Es3 in the Chezhen depression in Shengli Oilfield. Thickness and sedimentary microfacies maps of sandy conglomerate bodies in several stages are presented and several subtle traps were predicted and verified by drilling.
基金support from the authorities of the National Natural Science Foundation of China (Grant No. 41171016)Sichuan Province Science and technology support program (Grant No. 2014SZ0163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1309 and SKHL1418)
文摘Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.
基金the key project of National Natural Science Foundation of China(No.50739002)
文摘Flash floods result from a complex interaction among hydro-meteorological, hydrological, and hydraulic processes across various spatial and temporal scales. Sichuan Province suffers flash floods frequently owing to mountain weather and topography. A flash flood and gravel bed load transport are two key relative problems in mountain river engineering. Bed materials are often encountered in alternate scouring and deposition in mountain fluvial processes during a flash flood. In this circumstance, CRS-1 bed load numerical model jointly with scale physical model is employed to predict water level and gravel bed scour and deposition for design of flood control dykes and flash flood disaster mitigation. A case study on the mechanism of a flash flood disaster induced by bed load transport for a hydropower station in Sichuan Province is conducted. Finally, suggestions to protect the hydropower station are proposed.
基金Project(90715018)supported by the National Natural Science Foundation of ChinaProject(200808022)supported by the Special Fund for the Commonweal Indusry of China+1 种基金Project(08KJA560001)supported by the Key Basic Research Program of Natural Science of University in Jiangsu ProvinceProject(CX10B_170Z)supported by the Postgraduate Scientific Innovation Program in Jiangsu Province,China
文摘The laboratory tests on the post-liquefaction deformation of saturated sand-gravel composites were performed to investigate the characteristics of stress-strain relation and the dissipation of pore water pressure by the hollow cylinder apparatus. It is found that the stress-strain response and the dissipation process of pore water pressure are composed of three stages, including the low intensive strength stage, the superlinear strength recovery stage and the sublinear strength recovery stage, and the demarcation points of the curve of pore water pressure are lag behind those of the stress-strain response. The comparison results of the behaviour of large post-liquefaction deformation between saturated sand-gravel composites and Nanjing fine sand show that the low intensive strength stage and the superlinear strength recovery stage of saturated sand-gravel composites are shorter while the sublinear strength recovery stage is longer. A stress-strain model and a dissipation model of excess pore water pressure of liquefied sand-gravel composites are established, in which the initial confining pressure and the relative density can be considered synthetically. And it is found that the predicted results by the two models are in good agreement with experimental data.
文摘Research samples were taken from an ancient gravel stratum which is not only a representative soil layer along the middle-lower reaches of the Yangtze River in East China, but also one of the primary Neozoic strata in Naming district. Located mostly on the second and third terraces, the ancient gravel strata formed the geomorphic landscapes of terrace and step. They were complex in constitution, varied widely in stability, of multiple sources, locally derived, and associated with braided streams in the deposition environment. A CIPW (Cross, Iddings, Pirsson and Washington) method modified by the author was used to analyze the soil-rock-forming materials of finer grains (less than 2 mm in size) of the ancient gravel stratum. Results of the analysis showed that the sandy grains were composed of apatite, ilmenite, potassium feldspar, plagioclase, enstatite and free quartz, the clay mainly of kaolinite, and the cement of a combination of silicon, aluminum and iron at a ratio of 46:44:10. In the soil-rock-forming processes, including compactional solidification, water-stable illuviation-cementation t homogeneous overgrowth and so on, the loose soil-rock-forming components gradually changed into consolidated soil and further to the early stage of lithification. Meanwhile, from the analysis, we found that the ancient gravel stratum had been protected by the overlying Xiashu loess or basalt and the overloading resulted in overconsolidated strata. The modified CIPW method was applicable and effective for semi-quantitative analysis.
文摘Exploration on reservoir of glutenite segment in steep slope zone of half graben-like basin is one of the hot spot targets at present and in the future for new reservoirs; And the study of sediment character of sandy-conglomerate bodies is the keystone and also the difficult problem. Taking Tuo-147-well area in north zone of Dongying depression as an example, the micro-canal sedimentation was researched. The result shows that many micro-canals exist at the end of slope grain-flow in steep slope zone of half graben-like basin; The micro-canals grow at the end of subaqueous grain-flow deposited bodies of 3rd member of the Shahejie formation. The main condition of micro-canal formation is the slope angle less than 18° and a long suitable sedimentary slope. These micro-canals may communicate the reservoir of glutenite segment in steep slope zone and the hydrocarbon stratum as a bridge role. Therefore, it is significant in theory and practice for discovering a series of micro-canals at the end of slope grain-flow in steep slope zone of half graben-like basin.
基金Project(P2018G045)supported by the Science&Technology Research and Development Program of China RailwayProject(2018CFA013)supported by the Hubei Provincial Natural Science Foundation Innovation Group,China+1 种基金Project(KFJ-STS-QYZD-174)supported by the Science and Technology Service Network Initiative of the Chinese Academy of SciencesProject(51709257)supported by the National Natural Science Foundation of China。
文摘Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature.
基金Project(41172109)supported by the National Natural Science Foundation of ChinaProject(20110003110014)supported by the ResearchFoundation for the Doctoral Program of Higher Education,China
文摘The sand-conglomerate fans are the major depositional systems in the lower third member of Shahejie Formation in Shengtuo area, which formed in the deep lacustrine environment characterized by steep slope gradient, near sources and intensive tectonic activity. This work was focused on the sedimentary feature of the glutenite segment to conduct the seismic sedimentology research. The near-shore subaqueous fans and its relative gravity channel and slump turbidite fan depositions were identified according to observation and description of cores combining with the numerous data of seismic and logging. Then, the depositional model was built depending on the analysis of palaeogeomorphology. The seismic attributes which are related to the hydrocarbon but relative independent were chosen to conduct the analysis, the reservoir area of the glutenite segment was found performing a distribution where the amplitude value is relatively higher, and finally the RMS amplitude attribute was chosen to conduct the attribute predicting. At the same time, the horizontal distribution of the sedimentary facies was analyzed qualitatively. At last, the sparse spike inversion method was used to conduct the acoustic impedance inversion, and the inversion result can distinguish glutenite reservoir which is greater than 5 m. This method quantitatively characterizes the distribution area of the favorable reservoir sand.
基金Projects(51879041,51774112,U1810203)supported by the National Natural Science Foundation of ChinaProject(2020M672224)supported by the China Postdoctoral Science FoundationProject(B2020-41)supported by the Doctoral Fund of Henan Polytechnic University,China。
文摘Tight glutenite reservoirs are widely developed in Bohai Bay Basin,East China.They are mostly huge thick and rely on hydraulic fracturing treatment for commercial exploitation.To investigate the propagation behavior of hydraulic fractures in these glutenite reservoirs,the geological feature of reservoirs in Bohai Bay Basin is studied firstly,including the reservoir vertical distribution feature and the heterogeneous lithology.Then,hydraulic fracturing treatments in block Yan 222 are carried out and the fracturing processes are monitored by the microseismic system.Results show the hydraulic fractures generated in the reservoirs are mostly in X shape.The cause of X-shaped hydraulic fractures in this study is mainly ascribed to(I)the reservoir heterogeneity and(II)the stress shadow effect of two close hydraulic fractures propagating in the same orientation,which is confirmed by the following numerical simulation and related research in detail.This study can provide a reference for the research on the fracturing behavior of the deep thick glutenite reservoirs.
文摘Excavating sands and gravel on land in combination with constructing reservoirs for storing fresh water is an ideal approach in atolls. Appropriate mining of gravel from the prograding gravel beach is acceptable. Digging reef rock close to the edge of the wide ocean reef flat without surface loose sediments on it or sand beach can be accepted. Excavating sand from some depths in lagoon is a scientific approach particularly important for urbanized atolls. However, selecting appropriate sites for mining sand other than at some depths in lagoon is suitable to rural islands without dense populations. These sites include up drift side of long groin on the reef flat, partly filled access channel-port, outlet of artificial channel and lagoon margin on the prograding coast.
文摘Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.How to assess and control the deformation of the ground is the main purpose of the soil reinforcement technology.Grouting is a method commonly used to meet those requirements.This study is designed to investigate the effects on shield construction in the sand-gravel stratum.
基金jointly funded by the National Natural Science Foundation ( Grant No. 40972143)the Key Research Project of the 11th "Five-year Plan"of China Earthquake Administration( 1520945024)
文摘Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spot imaging, field validating and chronology research of the research area. Studies suggest that the middle part of Kouquan fault has had strong activity since the late Quaternary which controls the tectonic evolvement of the nearby mountains and Datong basin. The recent activity of this fault has faulted the sandy gravel layers of T1 terrace and the lower part of dark loessial soils over the terrace on the north of Chanfang village. The maximum vertical displacement is over 3m in the area between Xiaoyukou village and Louzikou village, and to the south of Dayukou village and the north of Emaokou village, the displacement decreases to 0.5m and 0.25m respectively. Based on the recent faulted landforms and combined with dating, we determined the age of recent activity of the fault in the research area to be between 7.71ka B.P. to 3.00 ka B.P. Discussions are made on this in combination with previous research.