Research samples were taken from an ancient gravel stratum which is not only a representative soil layer along the middle-lower reaches of the Yangtze River in East China, but also one of the primary Neozoic strata in...Research samples were taken from an ancient gravel stratum which is not only a representative soil layer along the middle-lower reaches of the Yangtze River in East China, but also one of the primary Neozoic strata in Naming district. Located mostly on the second and third terraces, the ancient gravel strata formed the geomorphic landscapes of terrace and step. They were complex in constitution, varied widely in stability, of multiple sources, locally derived, and associated with braided streams in the deposition environment. A CIPW (Cross, Iddings, Pirsson and Washington) method modified by the author was used to analyze the soil-rock-forming materials of finer grains (less than 2 mm in size) of the ancient gravel stratum. Results of the analysis showed that the sandy grains were composed of apatite, ilmenite, potassium feldspar, plagioclase, enstatite and free quartz, the clay mainly of kaolinite, and the cement of a combination of silicon, aluminum and iron at a ratio of 46:44:10. In the soil-rock-forming processes, including compactional solidification, water-stable illuviation-cementation t homogeneous overgrowth and so on, the loose soil-rock-forming components gradually changed into consolidated soil and further to the early stage of lithification. Meanwhile, from the analysis, we found that the ancient gravel stratum had been protected by the overlying Xiashu loess or basalt and the overloading resulted in overconsolidated strata. The modified CIPW method was applicable and effective for semi-quantitative analysis.展开更多
The decomposition kinetics for formation of CO2 hydrates in 90 cm 3wet natural silica sands were studied systematically using the depressurization method at the temperatures ranging from 273.2 to 277.2 K and the press...The decomposition kinetics for formation of CO2 hydrates in 90 cm 3wet natural silica sands were studied systematically using the depressurization method at the temperatures ranging from 273.2 to 277.2 K and the pressures from 0.5 to 1.0 MPa.The effects of temperature,pressure,particle diameter,porosity,and salinity of formation water on the decomposition kinetics were investigated.The results show that the dissociation percentage increases as temperature increases or as the initial decomposition pressure decreases.An increase in porosity or a decrease in particle diameter of silica sands accelerates the decomposition.Increasing the salinity of the formation water gives rise to a faster decomposition.However,a combination of the present results with the observations in literature reveals that the effect of the coexisting ionic solute depends on its chemical structure.展开更多
Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spo...Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spot imaging, field validating and chronology research of the research area. Studies suggest that the middle part of Kouquan fault has had strong activity since the late Quaternary which controls the tectonic evolvement of the nearby mountains and Datong basin. The recent activity of this fault has faulted the sandy gravel layers of T1 terrace and the lower part of dark loessial soils over the terrace on the north of Chanfang village. The maximum vertical displacement is over 3m in the area between Xiaoyukou village and Louzikou village, and to the south of Dayukou village and the north of Emaokou village, the displacement decreases to 0.5m and 0.25m respectively. Based on the recent faulted landforms and combined with dating, we determined the age of recent activity of the fault in the research area to be between 7.71ka B.P. to 3.00 ka B.P. Discussions are made on this in combination with previous research.展开更多
Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin...Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.展开更多
City metro tunnels are usually constructed as twin-parallel tunnels and their adjacent construction may lead to surface deformation,affecting the surface environment and the safety of the tunnels.Due to its strong dis...City metro tunnels are usually constructed as twin-parallel tunnels and their adjacent construction may lead to surface deformation,affecting the surface environment and the safety of the tunnels.Due to its strong dispersion,sandy cobble strata can be easily disturbed by shield tunneling.Based on the project of the Chengdu Metro Line 1,field and model tests were carried out to study the surface settlement caused by shield tunneling in sandy cobble strata by measuring surface settlement curves,ground loss ratios and construction influence zones.The discrete element method(DEM) was used to study the factors affecting the formation of ground arches in sandy cobble strata at the microscopic level.Results show that the shape of the surface settlement curve in sandy cobble strata is different from that in soft soil.The buried depth and clear spacing of the two tunnels had a significant impact on the formation of ground arches.展开更多
Bridge foundations located in deep water are usually subjected to horizontal dynamic loads and moments which may be caused by the wind, waves, earthquake, and the possibility of boat crashing or vehicle braking. Caiss...Bridge foundations located in deep water are usually subjected to horizontal dynamic loads and moments which may be caused by the wind, waves, earthquake, and the possibility of boat crashing or vehicle braking. Caisson foundations based on gravel or sand cushions are a new type of deep-water foundation for bridges, suitable for meizoseismal areas. In this paper, harmonic horizontal excitation tests for the study of the lateral dynamic response of caisson foundations based on cushion layers are described. Different lateral loads and two different cushion types are considered. The results show that the lateral dynamic responses of caisson foundations based on sand and gravel cushions both show strong nonlinear characteristics, and the resonant frequency of the foundation decreases with the increase of the excitation force. The dynamic displacement of a foundation based on a sand cushion is far less than that based on a gravel cushion, and the rate of decrease of the resonant frequency of a foundation based on a gravel cushion is faster than that of a foundation based on a sand cushion under the same conditions. Under dynamic loading the gravel cushion can more effectively dissipate vibration energy and isolate the vibration, than the sand cushion can. A simplified nonlinear analysis method is proposed to simulate the lateral dynamic response of caisson foundations, and the predicted response shows a reasonable match with the results observed in laboratory tests. Scaling laws have also been applied in this small-scale vibration model test to predict the dynamic behavior of the prototype foundation.展开更多
文摘Research samples were taken from an ancient gravel stratum which is not only a representative soil layer along the middle-lower reaches of the Yangtze River in East China, but also one of the primary Neozoic strata in Naming district. Located mostly on the second and third terraces, the ancient gravel strata formed the geomorphic landscapes of terrace and step. They were complex in constitution, varied widely in stability, of multiple sources, locally derived, and associated with braided streams in the deposition environment. A CIPW (Cross, Iddings, Pirsson and Washington) method modified by the author was used to analyze the soil-rock-forming materials of finer grains (less than 2 mm in size) of the ancient gravel stratum. Results of the analysis showed that the sandy grains were composed of apatite, ilmenite, potassium feldspar, plagioclase, enstatite and free quartz, the clay mainly of kaolinite, and the cement of a combination of silicon, aluminum and iron at a ratio of 46:44:10. In the soil-rock-forming processes, including compactional solidification, water-stable illuviation-cementation t homogeneous overgrowth and so on, the loose soil-rock-forming components gradually changed into consolidated soil and further to the early stage of lithification. Meanwhile, from the analysis, we found that the ancient gravel stratum had been protected by the overlying Xiashu loess or basalt and the overloading resulted in overconsolidated strata. The modified CIPW method was applicable and effective for semi-quantitative analysis.
基金Supported by the National Natural Science Foundation of China(40673043 20576073) the Program for New Century Excellent Talents in University from Ministry of Education of China(NCET-06-0088)
文摘The decomposition kinetics for formation of CO2 hydrates in 90 cm 3wet natural silica sands were studied systematically using the depressurization method at the temperatures ranging from 273.2 to 277.2 K and the pressures from 0.5 to 1.0 MPa.The effects of temperature,pressure,particle diameter,porosity,and salinity of formation water on the decomposition kinetics were investigated.The results show that the dissociation percentage increases as temperature increases or as the initial decomposition pressure decreases.An increase in porosity or a decrease in particle diameter of silica sands accelerates the decomposition.Increasing the salinity of the formation water gives rise to a faster decomposition.However,a combination of the present results with the observations in literature reveals that the effect of the coexisting ionic solute depends on its chemical structure.
基金jointly funded by the National Natural Science Foundation ( Grant No. 40972143)the Key Research Project of the 11th "Five-year Plan"of China Earthquake Administration( 1520945024)
文摘Systematic research of the characteristics of late Quaternary activity of the middle part of Kouquan fault has been done through conducting 1∶50000 geologic mapping combining with remote sensing interpretation of spot imaging, field validating and chronology research of the research area. Studies suggest that the middle part of Kouquan fault has had strong activity since the late Quaternary which controls the tectonic evolvement of the nearby mountains and Datong basin. The recent activity of this fault has faulted the sandy gravel layers of T1 terrace and the lower part of dark loessial soils over the terrace on the north of Chanfang village. The maximum vertical displacement is over 3m in the area between Xiaoyukou village and Louzikou village, and to the south of Dayukou village and the north of Emaokou village, the displacement decreases to 0.5m and 0.25m respectively. Based on the recent faulted landforms and combined with dating, we determined the age of recent activity of the fault in the research area to be between 7.71ka B.P. to 3.00 ka B.P. Discussions are made on this in combination with previous research.
文摘Parametamorphic rocks from Arong County in southeastern Inner Mongolia- Daxinganling district are regarded as Proterozoic in age, belonging to the Wolegen Group and composed of volcanoclastic and sand- stone in origin, and have been disputed in tectonic setting. Because of the stability in metamorphism, the rare earth elements indicate the features of their protoliths. The authors integrated the petrologic methods with the geochemical parameters which include ЕREE, ЕLREE/NHREE, δCe, δEu, La/Yb, Sm/Nd, Th/Sc and the standard values of chondrite. The results show that the protoliths of Wolengen Group may be a group of volcanoclastic and continental margin clastic rocks, and their tectonic setting is the continent island arc.
基金Project supported by the National Basic Research (973) Program of China (No. 2010CB732105)the National Natural Science Foundation of China (Nos. 50908193,50925830,and 51208432)
文摘City metro tunnels are usually constructed as twin-parallel tunnels and their adjacent construction may lead to surface deformation,affecting the surface environment and the safety of the tunnels.Due to its strong dispersion,sandy cobble strata can be easily disturbed by shield tunneling.Based on the project of the Chengdu Metro Line 1,field and model tests were carried out to study the surface settlement caused by shield tunneling in sandy cobble strata by measuring surface settlement curves,ground loss ratios and construction influence zones.The discrete element method(DEM) was used to study the factors affecting the formation of ground arches in sandy cobble strata at the microscopic level.Results show that the shape of the surface settlement curve in sandy cobble strata is different from that in soft soil.The buried depth and clear spacing of the two tunnels had a significant impact on the formation of ground arches.
基金supported by the National Natural Science Foundation of China(Nos.51808220 and 51822809)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB216036 and 20181BCB24011)the Science and Technology Research Project of the Education Department of Jiangxi Province(No.GJJ180340),China。
文摘Bridge foundations located in deep water are usually subjected to horizontal dynamic loads and moments which may be caused by the wind, waves, earthquake, and the possibility of boat crashing or vehicle braking. Caisson foundations based on gravel or sand cushions are a new type of deep-water foundation for bridges, suitable for meizoseismal areas. In this paper, harmonic horizontal excitation tests for the study of the lateral dynamic response of caisson foundations based on cushion layers are described. Different lateral loads and two different cushion types are considered. The results show that the lateral dynamic responses of caisson foundations based on sand and gravel cushions both show strong nonlinear characteristics, and the resonant frequency of the foundation decreases with the increase of the excitation force. The dynamic displacement of a foundation based on a sand cushion is far less than that based on a gravel cushion, and the rate of decrease of the resonant frequency of a foundation based on a gravel cushion is faster than that of a foundation based on a sand cushion under the same conditions. Under dynamic loading the gravel cushion can more effectively dissipate vibration energy and isolate the vibration, than the sand cushion can. A simplified nonlinear analysis method is proposed to simulate the lateral dynamic response of caisson foundations, and the predicted response shows a reasonable match with the results observed in laboratory tests. Scaling laws have also been applied in this small-scale vibration model test to predict the dynamic behavior of the prototype foundation.