Influence of the pouring temperature ranging from 680 to 780 ℃ on the solidification behavior, the microstructure and mechanical properties of the sand-cast Mg-10Gd-3Y-0.4Zr alloy was investigated. It was found that ...Influence of the pouring temperature ranging from 680 to 780 ℃ on the solidification behavior, the microstructure and mechanical properties of the sand-cast Mg-10Gd-3Y-0.4Zr alloy was investigated. It was found that the nucleation undercooling of the a-Mg phase increased from 2.3 to 6.3 ℃. The average a-Mg grain size increased from 44 to 71 μm, but then decreased to 46 μm. The morphology of the eutectic compound transformed from a continuous network into a discontinuous state and then subsequently into an island-like block. The volume fraction of β-Mg_24RE_5 phase increased and its morphology transformed from particle into rod-like. The increase in pouring temperature increased the solute concentration. YS increased from 138 to 151 MPa, and UTS increased from 186 to 197 MPa. The alloy poured at 750 ℃ had optimal combining strength and ductility. The fracture surface mode transformed from quasi-cleavage crack into transgranular fracture, all plus the dimple-like fracture, with the micro-porosity and the re-oxidation inclusion as major defects. The average a-Mg grain size played a main role in the YS of sand-cast Mg-10Gd-3Y-0.4Zr alloy, besides other factors, i.e. micro-porosity, morphology of eutectic compounds, re-oxidation inclusion and solute concentration.展开更多
The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In additi...The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In addition, the melt purifying mechanism of the complex melt-refining treatment for the sand-cast alloy was discussed systematically. The results show that the new melt-refining method can significantly improve melt quality and mechanical behavior of the tested alloy, i.e., compared to the reference unpttdfied alloy, the volume fraction of inclusions decreased from 0.47% to 0.28%, the ultimate tensile strength and elongation for T6-treated alloy increased from 245 MPa and 0.7% to 312 MPa and 4.5%, respectively. Especially, combining 1% flux with rotating gas bubble stirring can get even better purifying effectiveness than conventional sole 2% flux purification; the use of melt flux decreased by 50% and significantly reduced environmental pollution.展开更多
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the Funded Project of SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Influence of the pouring temperature ranging from 680 to 780 ℃ on the solidification behavior, the microstructure and mechanical properties of the sand-cast Mg-10Gd-3Y-0.4Zr alloy was investigated. It was found that the nucleation undercooling of the a-Mg phase increased from 2.3 to 6.3 ℃. The average a-Mg grain size increased from 44 to 71 μm, but then decreased to 46 μm. The morphology of the eutectic compound transformed from a continuous network into a discontinuous state and then subsequently into an island-like block. The volume fraction of β-Mg_24RE_5 phase increased and its morphology transformed from particle into rod-like. The increase in pouring temperature increased the solute concentration. YS increased from 138 to 151 MPa, and UTS increased from 186 to 197 MPa. The alloy poured at 750 ℃ had optimal combining strength and ductility. The fracture surface mode transformed from quasi-cleavage crack into transgranular fracture, all plus the dimple-like fracture, with the micro-porosity and the re-oxidation inclusion as major defects. The average a-Mg grain size played a main role in the YS of sand-cast Mg-10Gd-3Y-0.4Zr alloy, besides other factors, i.e. micro-porosity, morphology of eutectic compounds, re-oxidation inclusion and solute concentration.
基金Project(USCAST2012-15) supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace TechnologyProject(B type,14QB1403200) supported by the Shanghai Rising-Star Program,China+1 种基金Projects(20120073120011,20130073110052) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(IPP9084) supported by IPP program in SJTU,China
文摘The effect of complex melt-refining treatment (melt flux incorporating with rotating gas bubble stirring) on microstructure and mechanical behavior of the sand-cast Mg-10Gd-3Y-0.5Zr alloy was investigated. In addition, the melt purifying mechanism of the complex melt-refining treatment for the sand-cast alloy was discussed systematically. The results show that the new melt-refining method can significantly improve melt quality and mechanical behavior of the tested alloy, i.e., compared to the reference unpttdfied alloy, the volume fraction of inclusions decreased from 0.47% to 0.28%, the ultimate tensile strength and elongation for T6-treated alloy increased from 245 MPa and 0.7% to 312 MPa and 4.5%, respectively. Especially, combining 1% flux with rotating gas bubble stirring can get even better purifying effectiveness than conventional sole 2% flux purification; the use of melt flux decreased by 50% and significantly reduced environmental pollution.