Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM...Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM principles are discussed. The primary and secondary current characteristics are analyzed when the transformer is in both normal and magnetic bias conditions. Second, two digitalization methods are put forward after the research on PWM adjustment principles, which are based on the primary current feedback. Though the two methods could restrain magnetic bias, their realization is difficult. A new method is researched on double close-loops to overcome the above shortcomings, which uses the secondary current as the feedback signal and the primary current as the protection signal. Finally, the secondary current control made is discussed and realized. Welding experimental results show that the method has strong flexibility and adaptability, which can be used to realize the full digital welding power supply.展开更多
In order to upgrade the conventional wood pellet, Japanese softwood and hardwood chips were torrefied at around 200-350℃, and pelletized. The characteristics of the torrefied material/pellets such as their calorific ...In order to upgrade the conventional wood pellet, Japanese softwood and hardwood chips were torrefied at around 200-350℃, and pelletized. The characteristics of the torrefied material/pellets such as their calorific value, grinding energy, pelletizing energy and elemental composition, were also evaluated in this study. The calorific value rose with increasing torrefaction temperature and exceeded 25 MJ/kg (an increase of nearly 40% compared to the untreated state) for torrefaction at around 350℃. The grinding energy greatly decreased with increasing torrefaction temperature, and the reduction was larger for Japanese oak hardwood chips. The pelletization energy for the torrefied material tended to be slightly smaller than in the untreated case. People named such torrefied pellet as "hyper wood pellet".展开更多
A project entitled‘Development of a Global High-resolution Marine Dynamic Environmental Forecasting System’has been funded by‘The Program on Marine Environmental Safety Guarantee’of The National Key Research and D...A project entitled‘Development of a Global High-resolution Marine Dynamic Environmental Forecasting System’has been funded by‘The Program on Marine Environmental Safety Guarantee’of The National Key Research and Development Program of China.This project will accomplish its objectives through basic theoretical research,model development and expansion,and system establishment and application,with a focus on four key issues separated into nine tasks.A series of research achievements have already been obtained,including datasets,observations,theories,and model results.展开更多
The performance of DFIG-based wind generation systems that interconnected to solid networks is well understood and prevalent in Europe and North America. However, the application of these renewable generating stations...The performance of DFIG-based wind generation systems that interconnected to solid networks is well understood and prevalent in Europe and North America. However, the application of these renewable generating stations to weak network has been examined in very limited occasions. Weak networks have a range of limitations from system capacities to CFCT restrictions which would need to be well understood prior to wind energy integration. Of particular interest would be how much wind generation could be integrated into a weak network prior to increasing voltage and frequency stability issues brought about by penetration issues. This paper introduces a simple and practical approach based on the equal area criteria to investigate the stability of weak networks. Simulation results that are presented to show the proposed approach is a viable preliminary assessment tool to determine system stability on weak networks with wind power penetration.展开更多
The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model.With an application to the structural calculation,the pres...The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model.With an application to the structural calculation,the present model is used to describe and analyze the mechanical response of anisotropic 6260-T6 aluminum alloy extrusions.For the tensile specimens extracted along three different material orientations from the extruded aluminum profile,twelve simulations are carried out covering four different specimen geometries.The simulation results in force-displacement response and central logarithmic axial strain evolution are compared with experimental results.From the comparisons,it can be concluded that the present model has the capacity to describe the behavior of anisotropic material.From the force-displacement curves,the anisotropy is observed in different material orientations,and the physical mechanism of anisotropy is analyzed.展开更多
文摘Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM principles are discussed. The primary and secondary current characteristics are analyzed when the transformer is in both normal and magnetic bias conditions. Second, two digitalization methods are put forward after the research on PWM adjustment principles, which are based on the primary current feedback. Though the two methods could restrain magnetic bias, their realization is difficult. A new method is researched on double close-loops to overcome the above shortcomings, which uses the secondary current as the feedback signal and the primary current as the protection signal. Finally, the secondary current control made is discussed and realized. Welding experimental results show that the method has strong flexibility and adaptability, which can be used to realize the full digital welding power supply.
文摘In order to upgrade the conventional wood pellet, Japanese softwood and hardwood chips were torrefied at around 200-350℃, and pelletized. The characteristics of the torrefied material/pellets such as their calorific value, grinding energy, pelletizing energy and elemental composition, were also evaluated in this study. The calorific value rose with increasing torrefaction temperature and exceeded 25 MJ/kg (an increase of nearly 40% compared to the untreated state) for torrefaction at around 350℃. The grinding energy greatly decreased with increasing torrefaction temperature, and the reduction was larger for Japanese oak hardwood chips. The pelletization energy for the torrefied material tended to be slightly smaller than in the untreated case. People named such torrefied pellet as "hyper wood pellet".
基金funded by "The Program on Marine Environmental Safety Guarantee" of "The National Key Research and Development Program of China"[grant number2016YFC1401409]
文摘A project entitled‘Development of a Global High-resolution Marine Dynamic Environmental Forecasting System’has been funded by‘The Program on Marine Environmental Safety Guarantee’of The National Key Research and Development Program of China.This project will accomplish its objectives through basic theoretical research,model development and expansion,and system establishment and application,with a focus on four key issues separated into nine tasks.A series of research achievements have already been obtained,including datasets,observations,theories,and model results.
文摘The performance of DFIG-based wind generation systems that interconnected to solid networks is well understood and prevalent in Europe and North America. However, the application of these renewable generating stations to weak network has been examined in very limited occasions. Weak networks have a range of limitations from system capacities to CFCT restrictions which would need to be well understood prior to wind energy integration. Of particular interest would be how much wind generation could be integrated into a weak network prior to increasing voltage and frequency stability issues brought about by penetration issues. This paper introduces a simple and practical approach based on the equal area criteria to investigate the stability of weak networks. Simulation results that are presented to show the proposed approach is a viable preliminary assessment tool to determine system stability on weak networks with wind power penetration.
基金supported by the National Natural Science Foundation of China(Grant No.11021262)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2013-IV-021)
文摘The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model.With an application to the structural calculation,the present model is used to describe and analyze the mechanical response of anisotropic 6260-T6 aluminum alloy extrusions.For the tensile specimens extracted along three different material orientations from the extruded aluminum profile,twelve simulations are carried out covering four different specimen geometries.The simulation results in force-displacement response and central logarithmic axial strain evolution are compared with experimental results.From the comparisons,it can be concluded that the present model has the capacity to describe the behavior of anisotropic material.From the force-displacement curves,the anisotropy is observed in different material orientations,and the physical mechanism of anisotropy is analyzed.