A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposi...A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.展开更多
In this paper, the Lie-form invariance of a nonholonomic system of relative motion in event space is studied. Firstly, the definition and the criterion of the Lie-form invariance of the nonholonomic system of relative...In this paper, the Lie-form invariance of a nonholonomic system of relative motion in event space is studied. Firstly, the definition and the criterion of the Lie-form invariance of the nonholonomic system of relative motion in event space is given. Secondly, the Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. An example is given to illustrate the application of the results.展开更多
Objective To determine whether radiofrequency ablation using hypertonic saline solution instillation can increase the extent of thermally mediated coagulation in ex vivo pig liver tissue. Methods Fifty-six radiofreque...Objective To determine whether radiofrequency ablation using hypertonic saline solution instillation can increase the extent of thermally mediated coagulation in ex vivo pig liver tissue. Methods Fifty-six radiofrequency ablation lesions were produced in fresh ex vivo pig’s liver. According to different saline solutions, the lesions were divided into six groups: 25% acetic acid, 18% NaCl, 10% NaCl, 5% NaCl, 0.9% NaCl, and distilled water. After radiofrequency ablation, the lesions size and morphology were measured and compared.Results Using different instillation, the volume of coagulation necrosis was different: 25% acetic acid >18% NaCl >10% NaCl >5% NaCl >0.9% NaCl>distilled water. Conclusion Radiofrequency ablation using hypertonic saline solution instillation can increase the volume of radiofrequency ablation induced necrosis.展开更多
The past three decades have witnessed the explosion of nanoscience and technology, where notable research eftbrts have been made in synthesizing nanomaterials and controlling nanostructures of bulk materials. The unco...The past three decades have witnessed the explosion of nanoscience and technology, where notable research eftbrts have been made in synthesizing nanomaterials and controlling nanostructures of bulk materials. The uncovered mechanical behaviors of structures and materials with reduced sizes and dimensions pose open questions to the community of mechanicians, which expand the framework of continuum mechanics by advancing the theory, as well as modeling and experimental tools. Researchers in China have been actively involved into this exciting area, making remarkable contributions to the understanding of nanoscale mechanical processes, the development of multi-scale, multi-field modeling and experimental techniques to resolve the processing-microstructures-properties relationship of materials, and the interdisciplinary studies that broaden the subjects of mechanics. This article reviews selected progress made by this community, with the aim to clarify the key concepts, methods and applications of micro- and nano-mechanics, and to outline the perspectives in this fast-evolving field.展开更多
The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulation...The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers(300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested(Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer.展开更多
基金Supported by the Chinese National Key Basic Research Special Fund (No.2001CB6104) and the National Natural Science Foundation of China(No.20076027)
文摘A method for preparation of particle crystal film constructed from monodisperse silica colloidal particles in diameter of about 300 nm is reported. The films were prepared from an ethanol suspension by vertical deposition that relies on capillary forces to assemble colloidal crystal particles on a vertical substrate. The 3D ordered films were characterized by transmission spectra and scanning electric microscope (SEM). The effect of evaporation temperature, particle concentration and sintered temperature on the quality of colloidal particle crystal film was investigated.
文摘In this paper, the Lie-form invariance of a nonholonomic system of relative motion in event space is studied. Firstly, the definition and the criterion of the Lie-form invariance of the nonholonomic system of relative motion in event space is given. Secondly, the Hojman conserved quantity and a new type of conserved quantity deduced from the Lie-form invariance are obtained. An example is given to illustrate the application of the results.
文摘Objective To determine whether radiofrequency ablation using hypertonic saline solution instillation can increase the extent of thermally mediated coagulation in ex vivo pig liver tissue. Methods Fifty-six radiofrequency ablation lesions were produced in fresh ex vivo pig’s liver. According to different saline solutions, the lesions were divided into six groups: 25% acetic acid, 18% NaCl, 10% NaCl, 5% NaCl, 0.9% NaCl, and distilled water. After radiofrequency ablation, the lesions size and morphology were measured and compared.Results Using different instillation, the volume of coagulation necrosis was different: 25% acetic acid >18% NaCl >10% NaCl >5% NaCl >0.9% NaCl>distilled water. Conclusion Radiofrequency ablation using hypertonic saline solution instillation can increase the volume of radiofrequency ablation induced necrosis.
基金supported by the National Natural Science Foundation of China (Grant No. 11472150)
文摘The past three decades have witnessed the explosion of nanoscience and technology, where notable research eftbrts have been made in synthesizing nanomaterials and controlling nanostructures of bulk materials. The uncovered mechanical behaviors of structures and materials with reduced sizes and dimensions pose open questions to the community of mechanicians, which expand the framework of continuum mechanics by advancing the theory, as well as modeling and experimental tools. Researchers in China have been actively involved into this exciting area, making remarkable contributions to the understanding of nanoscale mechanical processes, the development of multi-scale, multi-field modeling and experimental techniques to resolve the processing-microstructures-properties relationship of materials, and the interdisciplinary studies that broaden the subjects of mechanics. This article reviews selected progress made by this community, with the aim to clarify the key concepts, methods and applications of micro- and nano-mechanics, and to outline the perspectives in this fast-evolving field.
基金part of a joint research project between GE Avio,University of Genova,and University of Florence
文摘The aerodynamic performance of a high-load low-pressure turbine blade cascade has been analyzed for three different distributed surface roughness levels(Ra) for steady and unsteady inflows. Results from CFD simulations and experiments are presented for two different Reynolds numbers(300000 and 70000 representative of take-off and cruise conditions, respectively) in order to evaluate the roughness effects for two typical operating conditions. Computational fluid dynamics has been used to support and interpret experimental results, analyzing in detail the flow field on the blade surface and evaluating the non-dimensional local roughness parameters, further contributing to understand how and where roughness have some influence on the aerodynamic performance of the blade. The total pressure distributions in the wake region have been measured by means of a five-hole miniaturized pressure probe for the different flow conditions, allowing the evaluation of profile losses and of their dependence on the surface finish, as well as a direct comparison with the simulations. Results reported in the paper clearly highlight that only at the highest Reynolds number tested(Re=300000) surface roughness have some influence on the blade performance, both for steady and unsteady incoming flows. In this flow condition profile losses grow as the surface roughness increases, while no appreciable variations have been found at the lowest Reynolds number. The boundary layer evolution and the wake structure have shown that this trend is due to a thickening of the suction side boundary layer associated to an anticipation of transition process. On the other side, no effects have been observed on the pressure side boundary layer.