Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sint...Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.展开更多
Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispe...Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispersants of different molecular structure on limestone suspension properties in wet stirred media milling. The polymers differed in their molecular weight and PDI (polydispersity index). Two traditionally fractionated polymer dispersants having a high PDI (over 2) and one made by controlled radical polymerization having a low PDI (1.2) were tested. It was noticed that these dispersants worked as electrosteric stabilizers and prevented the agglomeration of ground limestone particles. Their addition allowed increased solids concentrations to be used in the grinding experiments and at the same time lowered the particle size and specific energy consumption. The particle sizes obtained were about 1 μm regardless of the dispersant or its dose. The dispersant with a low PDI reduced the viscosity more than did the high PDI dispersants. The results indicate that higher solids concentrations can be used at the same dispersant dose when a low PDI dispersant is used, leading to energy savings via increased throughput. Alternatively, a lower dose of low PDI polymer dispersant than of a high PDI polymer dispersant can be used at the same solids concentration.展开更多
A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can eas...A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.展开更多
In three shallow-level fault systems in eastern China, nano-sized (30―100 nm) grinding grain textures are found in the thin-shelled rheological layer representing frictional-viscous high strain field. The surface lay...In three shallow-level fault systems in eastern China, nano-sized (30―100 nm) grinding grain textures are found in the thin-shelled rheological layer representing frictional-viscous high strain field. The surface layer near slipping plane is composed of stacks of grinding grains with high sphericity and uniform nano-sized diameter, while the underlying layer appears as a mixture of irregular ones with diverse diameters. Rock deformation experiments indicate that the grinding grain texture is a common phenomenon in shearing fractures, suggesting a potential transition from sliding friction to rolling one during the rock deformation process. This transition is crucial for many tribological processes in geo- logical fields.展开更多
基金Project (51162026) supported by the National Natural Science Foundation of ChinaProjects (20100480949, 201104509) supported by China Postdoctoral Science FoundationProject (133274341015501) supported by Postdoctoral Science Foundation of Central South University, China
文摘Li3V2(PO4)3 precursor was obtained with V2Os.nH2O , LiOH'H2O, NH4H2PO4 and sucrose as starting materials by grinding-sol-gel method, and then the monoclinic-typed Li3Vz(PO4)3 cathode material was prepared by sintering the amorphous Li3V2(PO4)3. The as-sintered samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption and electrochemical measurement. It is found that Li3Vz(PO4)3 sintered at 700 ℃ possesses good wormhole-like mesoporous structure with the largest specific surface area of 188 cmZ/g, and the smallest pore size of 9.3 nm. Electrochemical test reveals that the initial discharge capacity of the 700 ℃ sintered sample is 155.9 mA.h/g at the rate of 0.2C, and the capacity retains 154 mA.h/g after 50 cycles, exhibiting a stable discharge capacity at room temperature.
文摘Polymer dispersants are widely used as grinding aids to reduce the viscosity of mineral particle suspensions and to improve energy efficiency during fine grinding. The authors studied here the effects of polymer dispersants of different molecular structure on limestone suspension properties in wet stirred media milling. The polymers differed in their molecular weight and PDI (polydispersity index). Two traditionally fractionated polymer dispersants having a high PDI (over 2) and one made by controlled radical polymerization having a low PDI (1.2) were tested. It was noticed that these dispersants worked as electrosteric stabilizers and prevented the agglomeration of ground limestone particles. Their addition allowed increased solids concentrations to be used in the grinding experiments and at the same time lowered the particle size and specific energy consumption. The particle sizes obtained were about 1 μm regardless of the dispersant or its dose. The dispersant with a low PDI reduced the viscosity more than did the high PDI dispersants. The results indicate that higher solids concentrations can be used at the same dispersant dose when a low PDI dispersant is used, leading to energy savings via increased throughput. Alternatively, a lower dose of low PDI polymer dispersant than of a high PDI polymer dispersant can be used at the same solids concentration.
基金Project(51074180)supported by the National Natural Science Foundation of China
文摘A new impregnated diamond bit was designed to solve the slipping problem when impregnated diamond bit was used for extra-hard, compact, and nonabrasive rock formation. Adding Si C grits into matrix, Si C grits can easily be exfoliated from the surface of the matrix due to weak holding-force with matrix, which made the surface non-smooth. Three Ф36/24 mm laboratorial bits were manufactured to conduct a laboratory drilling test on zirconiacorundum refractory brick. The laboratory drilling test indicates that the abrasive resistance of the bit work layer is proportional to the Si C concentation. The higher the concentration, the weaker the abrasive resistance of matrix. The new impregnated diamond bit was applied to a mining area drilling construction in Jiangxi province, China. Field drilling application indicates that the ROP(rate of penetration) of the new bit is approximately two to three times that of the common bits. Compared with the common bits, the surface of the new bit has typical abrasive wear characteristics,and the metabolic rate of the diamond can be well matched to the wear rate of the matrix.
基金the National Natural Science Foundation of China (Grant Nos. 40634022, 40673041, 40572118 and 40372092) the State Key Laboratory of Geology and Exploitation of Petroleum Reservoir (PLN 0606)
文摘In three shallow-level fault systems in eastern China, nano-sized (30―100 nm) grinding grain textures are found in the thin-shelled rheological layer representing frictional-viscous high strain field. The surface layer near slipping plane is composed of stacks of grinding grains with high sphericity and uniform nano-sized diameter, while the underlying layer appears as a mixture of irregular ones with diverse diameters. Rock deformation experiments indicate that the grinding grain texture is a common phenomenon in shearing fractures, suggesting a potential transition from sliding friction to rolling one during the rock deformation process. This transition is crucial for many tribological processes in geo- logical fields.