The exciton relaxation kinetics of ZnCuInS/ZnSe/ZnS quantum dots (QDs) is investigated by time-resolved spectroscopy techniques in detail. Based on the rate distribution model, the wavelength-dependent emission dyna...The exciton relaxation kinetics of ZnCuInS/ZnSe/ZnS quantum dots (QDs) is investigated by time-resolved spectroscopy techniques in detail. Based on the rate distribution model, the wavelength-dependent emission dynamics shows that the intrinsic exciton, the exciton in the interface defect state and that in donor-acceptor pair state (DAPS) together participate in the photoluminescence process of QDs, and the whole emission process is mainly dependent on the DAPS emission. Transient absorption data show that the intrinsic exciton and the interface defect species maybe together appear after excitation and the intensity-dependent Auger recombination process also exists in QDs at high excitation intensity.展开更多
文摘The exciton relaxation kinetics of ZnCuInS/ZnSe/ZnS quantum dots (QDs) is investigated by time-resolved spectroscopy techniques in detail. Based on the rate distribution model, the wavelength-dependent emission dynamics shows that the intrinsic exciton, the exciton in the interface defect state and that in donor-acceptor pair state (DAPS) together participate in the photoluminescence process of QDs, and the whole emission process is mainly dependent on the DAPS emission. Transient absorption data show that the intrinsic exciton and the interface defect species maybe together appear after excitation and the intensity-dependent Auger recombination process also exists in QDs at high excitation intensity.