To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopk...To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.展开更多
Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement pro...Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.展开更多
The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus...The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus on agreeable slip rates along much of its length and the slip rate gradient along the eastern part, both of which play critical roles in a range of models for the eastward extrusion and thickened crust of the Tibetan Plateau. New slip rates have been determined at sites along the eastern part of the Kunlun Fault by dating deposits and measuring atop displaced fluvial terrace risers. Field investigations and interpretation of satellite images reveal geometrical features of the fault and the late Quaternary offset, new earthquake ruptures and surface-rupturing segmentation, from which long-term slip rates and earthquake recurrence intervals on the fault are estimated. The tectonic geomorphology method has determined that the long-term horizontal slip rates on the Tuosuohu, Maqin and Ma- qu segments from west to east are 11.2±1, 9.3±2, and 4.9±1.3 mm/a while their vertical slip rates are 1.2±0.2, 0.7±0.1, and 0.3 mm/a in the late Quaternary. Results indicate that the slip rates regularly decrease along the eastern -300 km of the fault from 〉10 to 〈5 mm/a. This is consistent with the decrease in the gradient such that at the slip rate break point is at the triple point intersection with the transverse fault, which in turn is transformed to the Awancang Fault. The vector decomposition for this tectonic transformation shows that the western and eastern branches of the Awancang Fault fit the slip-partitioning mode. The slip rate of the southwestern wall is 4.6 mm/a relative to the northeastern wall and the slip direction is 112.1°. The mid-eastern part of the Kunlun Fault can be divided into three independent segments by the A'nyemaqen double restraining bend and the Xigongzhou intersection zone, which compose the surface rupture segmentation indicators for themselves as well as the ending point of the 1937 M7.5 Tuosuohu earthquake. The average recurrence interval of the characteristic earthquakes are estimated to be 500-1000 a, respectively. The latest earthquake ruptures occurred in AD 1937 on the western Tuosuohu segment, as compared to -514-534 a BP on the Maqin segment, and -1055 to 1524 a BP on the Maqu segment. This may indicate a unidirectional migration for surface rupturing earthquakes along the mid-eastern Kunlun Fault related to stress triggered between these segments. Meanwhile, the long-term slip rate is obtained through the single event offset and the recurrence interval, which turn out to be the same results as those determined by the offset tectonic geomorphology method, i.e., the decreasing gradient corresponds to the geometrical bending and the fault's intersection with the transverse fault. Therefore, the falling slip rate gradient of the mid-eastern Kunlun Fault is mainly caused by eastward extension of the fault and its intersection with the transverse fault.展开更多
基金the National Natural Science Foundation of China(Nos.41972283,11972378)the National Key Scientific Instrument and Equipment Development,China(No.51927808)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX2018B066).
文摘To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.
基金supported by the National Natural Science Foundation of China (41472272, 41225011)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2013K015)
文摘Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.
基金supported by National Natural Science Foundation of China (Grant Nos. 40821160550 and 40974057)International Scientific Joint Project of China (Grant No. 2009DFA21280)
文摘The Kunlun Fault, an active fault on the border between the Bayan Har and Kunlun-Qaidam blocks, is one of the major left lateral strike-slip faults in the Tibetan Plateau. Previous research has not reached a consensus on agreeable slip rates along much of its length and the slip rate gradient along the eastern part, both of which play critical roles in a range of models for the eastward extrusion and thickened crust of the Tibetan Plateau. New slip rates have been determined at sites along the eastern part of the Kunlun Fault by dating deposits and measuring atop displaced fluvial terrace risers. Field investigations and interpretation of satellite images reveal geometrical features of the fault and the late Quaternary offset, new earthquake ruptures and surface-rupturing segmentation, from which long-term slip rates and earthquake recurrence intervals on the fault are estimated. The tectonic geomorphology method has determined that the long-term horizontal slip rates on the Tuosuohu, Maqin and Ma- qu segments from west to east are 11.2±1, 9.3±2, and 4.9±1.3 mm/a while their vertical slip rates are 1.2±0.2, 0.7±0.1, and 0.3 mm/a in the late Quaternary. Results indicate that the slip rates regularly decrease along the eastern -300 km of the fault from 〉10 to 〈5 mm/a. This is consistent with the decrease in the gradient such that at the slip rate break point is at the triple point intersection with the transverse fault, which in turn is transformed to the Awancang Fault. The vector decomposition for this tectonic transformation shows that the western and eastern branches of the Awancang Fault fit the slip-partitioning mode. The slip rate of the southwestern wall is 4.6 mm/a relative to the northeastern wall and the slip direction is 112.1°. The mid-eastern part of the Kunlun Fault can be divided into three independent segments by the A'nyemaqen double restraining bend and the Xigongzhou intersection zone, which compose the surface rupture segmentation indicators for themselves as well as the ending point of the 1937 M7.5 Tuosuohu earthquake. The average recurrence interval of the characteristic earthquakes are estimated to be 500-1000 a, respectively. The latest earthquake ruptures occurred in AD 1937 on the western Tuosuohu segment, as compared to -514-534 a BP on the Maqin segment, and -1055 to 1524 a BP on the Maqu segment. This may indicate a unidirectional migration for surface rupturing earthquakes along the mid-eastern Kunlun Fault related to stress triggered between these segments. Meanwhile, the long-term slip rate is obtained through the single event offset and the recurrence interval, which turn out to be the same results as those determined by the offset tectonic geomorphology method, i.e., the decreasing gradient corresponds to the geometrical bending and the fault's intersection with the transverse fault. Therefore, the falling slip rate gradient of the mid-eastern Kunlun Fault is mainly caused by eastward extension of the fault and its intersection with the transverse fault.