In order to obtain the strength design equations for internally ring-stiffened circular hollowsection tubular DT( double tee)-joints subjected to brace axial compression or tension, theoretical and numerical studies...In order to obtain the strength design equations for internally ring-stiffened circular hollowsection tubular DT( double tee)-joints subjected to brace axial compression or tension, theoretical and numerical studies on 800 stiffened joints were conducted. Based on the failure mechanism of the stiffened joints, four theoretical models and corresponding equations for predicting the strength of the stiffeners are proposed. Combined with existing unstiffened DT-joint design equations, a design equation for the stiffened joints is proposed. The finite element analysis shows that the failure of the stiffened joints under brace axial loads can be characterized by plastic hinges forming in the stiffener and chord wall yielding in the vicinity of the brace-chord intersection. The reliability of the proposed stiffener strength equations is demonstrated by a reliability analysis. Good agreement is achieved between the stiffened joint strength calculated from the proposed joint strength equation and that obtained from finite element analysis.展开更多
Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pres...Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pressure bar(SHPB)in four different impact loading conditions.Thin sections near failure surfaces were also made to evaluate the growth patterns of fractures observed by polarizing microscope.Scanning electron microscopy(SEM)was used to observe mineral grains on failure surfaces and to evaluate their response to loading and failure.The results indicate that the number of spalling cracks increases with increase in peak impact loads and that quartz sustains abundant intergranular fracturing.Cleavage planes and their direction relative to loading play a vital role in rock strength and fracturing.Separation along cleavage planes perpendicular to loading without the movement of micaceous minerals parallel to loading appears to be unique to the rock spalling process.展开更多
A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sid...A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.展开更多
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston...To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.展开更多
The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial load...The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial loading rate in coal and rock mechanics test.Therefore,uniaxial compression tests under various loading rates of 0.05,0.1,0.15,0.25,0.5 MPa/s were conducted using 2000 kN triaxial testing machine and PCI-2 acoustic emission test system to study the loading rate effect on the mechanical properties of deep sandstones.The results show that 1)the peak strength and elastic modulus of the deep sandstone increase with the loading rate increasing;2)with the loading rate increasing,the deep sandstone transforms from plastic-elastic-plastic to plastic-elastic and moreover,the failure mode gradually transfers from type I to type III;3)With the loading rate increasing,the total input strain energy,elastic strain energy,and dissipated strain energy generally increase;4)the damage variable presents the evolution characteristics of inverted“S”shape with time,and with the loading rate increasing,the damage degree of the deep sandstone is aggravated.The conclusion obtained can provide the theoretical basis for the stability control of the surrounding rock in deep engineering.展开更多
This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used t...This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting.展开更多
基金The Open Project of State Key Laboratory of Subtropical Building Science,South China University of Technology(No.2014KB29,2015ZB30)
文摘In order to obtain the strength design equations for internally ring-stiffened circular hollowsection tubular DT( double tee)-joints subjected to brace axial compression or tension, theoretical and numerical studies on 800 stiffened joints were conducted. Based on the failure mechanism of the stiffened joints, four theoretical models and corresponding equations for predicting the strength of the stiffeners are proposed. Combined with existing unstiffened DT-joint design equations, a design equation for the stiffened joints is proposed. The finite element analysis shows that the failure of the stiffened joints under brace axial loads can be characterized by plastic hinges forming in the stiffener and chord wall yielding in the vicinity of the brace-chord intersection. The reliability of the proposed stiffener strength equations is demonstrated by a reliability analysis. Good agreement is achieved between the stiffened joint strength calculated from the proposed joint strength equation and that obtained from finite element analysis.
基金the financial supports from the National Natural Science Foundation of China(Nos.51904335,51904333,11772357,51927808)。
文摘Rocks are likely to undergo spalling failure under dynamic loading.The fracture development and rock failure behaviours were investigated during dynamic tensile loading.Tests were conducted with a split-Hopkinson pressure bar(SHPB)in four different impact loading conditions.Thin sections near failure surfaces were also made to evaluate the growth patterns of fractures observed by polarizing microscope.Scanning electron microscopy(SEM)was used to observe mineral grains on failure surfaces and to evaluate their response to loading and failure.The results indicate that the number of spalling cracks increases with increase in peak impact loads and that quartz sustains abundant intergranular fracturing.Cleavage planes and their direction relative to loading play a vital role in rock strength and fracturing.Separation along cleavage planes perpendicular to loading without the movement of micaceous minerals parallel to loading appears to be unique to the rock spalling process.
基金Projects(41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2017zzts167)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.
基金Projects(41972283,41630642)supported by the National Natural Science Foundation of ChinaProject(51927808)supported by the National Key Scientific Instrument and Equipment Development,ChinaProject(CX2018B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.
基金Projects(52034009, 51974319) supported by the National Natural Science Foundation of ChinaProject(2020JCB01)supported by the Yue Qi Distinguished Scholar Project of China。
文摘The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial loading rate in coal and rock mechanics test.Therefore,uniaxial compression tests under various loading rates of 0.05,0.1,0.15,0.25,0.5 MPa/s were conducted using 2000 kN triaxial testing machine and PCI-2 acoustic emission test system to study the loading rate effect on the mechanical properties of deep sandstones.The results show that 1)the peak strength and elastic modulus of the deep sandstone increase with the loading rate increasing;2)with the loading rate increasing,the deep sandstone transforms from plastic-elastic-plastic to plastic-elastic and moreover,the failure mode gradually transfers from type I to type III;3)With the loading rate increasing,the total input strain energy,elastic strain energy,and dissipated strain energy generally increase;4)the damage variable presents the evolution characteristics of inverted“S”shape with time,and with the loading rate increasing,the damage degree of the deep sandstone is aggravated.The conclusion obtained can provide the theoretical basis for the stability control of the surrounding rock in deep engineering.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51325901)the International Science and Technology Cooperation Program of China(Grant No.2015DFE72830)State Key Program of National Natural Science of China(Grant No.51338009)
文摘This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting.