The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to charact...The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.展开更多
基金Project(10776023)supported by the National Natural Science Foundation of China
文摘The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.