Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ...Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.展开更多
Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Base...Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed.展开更多
This paper presents a probabilistic reliability method for the welded shell during crack growth. The crack growth model incorporated with a failure assessment diagram(FAD) , which can provides a better estimation of...This paper presents a probabilistic reliability method for the welded shell during crack growth. The crack growth model incorporated with a failure assessment diagram(FAD) , which can provides a better estimation of the critical crack length, is developed to describe fatigue failure. All variables for particular welded joints of the shell are studied. Among them, the stress variables are based on the calculated stress by using the finite element (FE) code ANSYS. Fatigue reliability analysis of the welded shell is performed by using the Monte Carlo simulation method. The failure probability curve of the example kiln is significantly useful to determine the repair schedule of shell cracks.展开更多
基金provided by the National Natural Science Foundation of China(Nos.51322401,51309222,51323004,51579239 and 51574223)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2014KF03)+2 种基金the State Key Laboratory for GeoMechanics Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and MitigationDeep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1305)China Postdoctoral Science Foundation(Nos.2014M551700and 2013M531424)
文摘Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.
基金Projects(51374257,50804060)supported by the National Natural Science Foundation of ChinaProject(NCET-09-0844)supported by the New Century Excellent Talent Foundation from MOE of China
文摘Due to the extreme complexity of mechanical response of soft surrounding rock(SR) around a tunnel under high geostatic stress conditions, the integration of physical and numerical modeling techniques was adopted. Based on the similarity theory, new composite-similar material was developed, which showed good agreement with the similarity relation and successfully simulated physico-mechanical properties(PMP) of deep buried soft rock. And the 800 mm×800 mm×200 mm physical model(PM) was conducted, in which the endoscopic camera technique was adopted to track the entire process of failure of the model all the time. The experimental results indicate that the deformation of SR around a underground cavern possessed the characteristics of development by stages and in delay, and the initial damage of SR could induce rapid failure in the later stage, and the whole process could be divided into three stages, including the localized extension of crack(the horizontal load(HL) was in the range of 130 k N to 170 k N, the vertical load(VL) was in the range of 119 k N to 153.8 k N), rapid crack coalescence(the HL was in the range of 170 k N to 210 k N, the VL was in the range of 153.8 k N to 182.5 k N) and residual strength(the HL was greater than 210 k N, the VL was greater than 182.5 k N). Under the high stress conditions, the phenomenon of deformation localization in the SR became serious and different space positions show different deformation characteristics. In order to further explore the deformation localization and progressive failure phenomenon of soft SR around the deeply buried tunnel, applying the analysis software of FLAC3 D three-dimensional explicit finite-difference method, based on the composite strain-softening model of Mohr-Coulomb shear failure and tensile failure, the calculation method of large deformation was adopted. Then, the comparative analysis between the PM experiment and numerical simulation of the three centered arch tunnels was implemented and the relationship of deformation localization and progressive failure of SR around a tunnel under high stress conditions was discussed.
基金National Natural Science Foundation of China(No.51075140)Scientific Research Fund of Hunan Provincial Education Department(No.09C407)
文摘This paper presents a probabilistic reliability method for the welded shell during crack growth. The crack growth model incorporated with a failure assessment diagram(FAD) , which can provides a better estimation of the critical crack length, is developed to describe fatigue failure. All variables for particular welded joints of the shell are studied. Among them, the stress variables are based on the calculated stress by using the finite element (FE) code ANSYS. Fatigue reliability analysis of the welded shell is performed by using the Monte Carlo simulation method. The failure probability curve of the example kiln is significantly useful to determine the repair schedule of shell cracks.