Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressiv...Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressive strength of jointed rock mass varies with the number of natural joints and inclination of natural joints. As the number of natural joints in rock mass increases, the anisotropy becomes less and less. It is justifiable to treat approximately rock mass containing six or more natural joints instead of four or more joints that was described in literature of Hoek and Brown as isotropy.展开更多
基金Supported by the National 973 Planning Project(2007CB209404)the Doctoral Research Foundation of Dalian University(0302221)
文摘Based on Rock Failure Process Analysis model RFPA2D, the evolutionary proc- esses of failure process of rock mass with multiple natural joints were simulated. Numeri- cal simulations show that anisotropy of compressive strength of jointed rock mass varies with the number of natural joints and inclination of natural joints. As the number of natural joints in rock mass increases, the anisotropy becomes less and less. It is justifiable to treat approximately rock mass containing six or more natural joints instead of four or more joints that was described in literature of Hoek and Brown as isotropy.