期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据增强的秦俑碎片深度分类模型 被引量:1
1
作者 鱼跃华 张海波 +4 位作者 李昕 寇姣姣 李康 耿国华 周明全 《激光与光电子学进展》 CSCD 北大核心 2022年第18期101-110,共10页
在秦俑保护领域,为了降低秦俑碎片匹配及拼接的工作难度,更多的计算机辅助技术应用在破碎秦俑复原工作核心环节的碎片分类中。针对传统的秦俑碎片分类方法对碎片特征提取不充分及秦俑碎片数据采集难度较高等导致的分类准确率低下的问题... 在秦俑保护领域,为了降低秦俑碎片匹配及拼接的工作难度,更多的计算机辅助技术应用在破碎秦俑复原工作核心环节的碎片分类中。针对传统的秦俑碎片分类方法对碎片特征提取不充分及秦俑碎片数据采集难度较高等导致的分类准确率低下的问题,提出了一种基于数据增强的秦俑碎片深度分类模型。首先,通过条件生成式对抗网络对现有秦俑碎片数据集进行数据增强,实现秦俑数据集的扩充。其次,通过深度卷积神经网络自动且充分地提取碎片特征信息并实现有效的碎片分类效果。然后,引入convolutional block attention module(CBAM)双通道注意力机制和CutMix增强策略来显著提升深度分类模型的性能。最后,在秦俑实验数据集的对比实验结果表明,与传统的基于几何特征、尺度不变特征变换特征、形状特征、多特征融合等经典碎片分类方法相比,所提方法对秦俑碎片的分类取得了更准确的分类结果,有效降低了后续复原工作中匹配、拼接等工作的复杂度,进而提高了秦俑文物复原工作的整体效率。 展开更多
关键词 图像处理 破碎秦俑复原 碎片分类 条件生成式对抗网络 双通道注意力机制 增强策略
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部