Zinc chalcogenide which includes zinc selenide,zinc sulphide,zinc telluride and mixed crystals of these shows a great potential as an optoelectronic device material. Zinc selenotelluride is a suitable material for vis...Zinc chalcogenide which includes zinc selenide,zinc sulphide,zinc telluride and mixed crystals of these shows a great potential as an optoelectronic device material. Zinc selenotelluride is a suitable material for visible light emitting devices which are expected to cover the spectral range from yellow to blue. In our present study the composition controlled ZnSe1-xTex films with different Te content x = 0,0.2,0.4,0.6,0.8 and 1.0 were deposited by electron beam (EB) evaporation technique. GaAs films were deposited by vacuum evaporation route on indium tin oxide (ITO) substrates which were used as base for depositing the ZnSe1-xTex film. The band-gap energy change in the entire composition range was determined at room temperature by photoluminescence (PL) spectroscopy. The peak observed at about 2.56 eV shows the effect of solid solution formation between ZnSe and ZnTe which modifies the lattice and consequently the band edge emission characteristics. The heterostructures showed three peaks in the visible region of white light spectrum.展开更多
文摘Zinc chalcogenide which includes zinc selenide,zinc sulphide,zinc telluride and mixed crystals of these shows a great potential as an optoelectronic device material. Zinc selenotelluride is a suitable material for visible light emitting devices which are expected to cover the spectral range from yellow to blue. In our present study the composition controlled ZnSe1-xTex films with different Te content x = 0,0.2,0.4,0.6,0.8 and 1.0 were deposited by electron beam (EB) evaporation technique. GaAs films were deposited by vacuum evaporation route on indium tin oxide (ITO) substrates which were used as base for depositing the ZnSe1-xTex film. The band-gap energy change in the entire composition range was determined at room temperature by photoluminescence (PL) spectroscopy. The peak observed at about 2.56 eV shows the effect of solid solution formation between ZnSe and ZnTe which modifies the lattice and consequently the band edge emission characteristics. The heterostructures showed three peaks in the visible region of white light spectrum.