Objective To reduce the toxicity and side effects of arsenic trioxide(ATO)and provide a new approach for the treatment of primary liver cancer,a folic acid-modified calcium arsenite liposomal“target-controlled”drug ...Objective To reduce the toxicity and side effects of arsenic trioxide(ATO)and provide a new approach for the treatment of primary liver cancer,a folic acid-modified calcium arsenite liposomal“target-controlled”drug delivery system(FA-LP-CaAs)was fabricated using the reverse microemulsion method.Methods A Malvern particle size analyzer and a transmission electron microscope were employed to determine the particle size,distribution,zeta potential and morphology of FA-LP-CaAs.Further,inductively coupled plasma emission spectrometry was employed to determine the drug loading capacity,entrapment efficiency,and in vitro release behavior of FA-LP-CaAs.To determine its toxicity in human hepatoma cells(HepG2)and human normal hepatocytes(LO2)and its effect on HepG2 cell cycle and apoptosis,the MTT method was used.Laser confocal and flow cytometry were also employed to determine the uptake of FA-LP-CaAs by cells.After establishing a mouse liver cancer model,the in vivo distribution of the drug included in the formulation was investigated using in vivo fluorescence.To evaluate the liver cancer targeting and anti-tumor effects of FALP-CaAs in vivo,the distribution of ATO in tissues and changes in tumor volume and body weight after liposomal administration were investigated using hematoxylin-eosin(HE)-stained tumor sections.Results The particle size,zeta potential and PDI of FA-LP-CaAs were(122.67±2.18)nm,(12.81±0.75)mV and 0.22±0.01,respectively,while its drug loading capacity was 18.49%±1.14%.In vitro experimental results revealed that FA-LP-CaAs had a strong killing effect on HepG2 cells.Further,the cell uptake capacity of this formulation was found to improve.Based on in vivo assessments,FA-LP-CaAs could significantly increase the distribution of ATO in tumor sites and inhibit tumor growth.Conclusions Herein,an FA-LP-CaAs formulation was successfully fabricated.This liposomal drug delivery system had a round appearance,uniform particle size,good polydispersity coefficient,evident“core-shell”structure,high drug loading capacity and pH response,tumor targeted drug delivery and sustained drug release.These findings support further research and the application of ATO as an anti-liver cancer prodrug and provide a new method for the treatment of liver cancer.展开更多
The present study investigated the removal of inorganic arsenic from Pinctada martensii enzymatic hydrolysate through unmodified resin (D296) and Zr(IV)-loaded chelating resin (Zr-D401). By loading Zr to macropo...The present study investigated the removal of inorganic arsenic from Pinctada martensii enzymatic hydrolysate through unmodified resin (D296) and Zr(IV)-loaded chelating resin (Zr-D401). By loading Zr to macroporous chelating resin D401, the as exchange adsorption active sites are generated. This transforms D401 from a material that does not have the arsenic adsorption capacity into a material that has excellent arsenic exchange adsorption capacity. The static adsorption experiments were conducted to investigate the optimal removal condition for D296 and Zr-D401. The experimental results show that: the optimum condition for D296 is that T= 25℃, pH= 5, resin additive amount= 1 g (50 mL)-1, and contact time = 10 h, the corresponding arsenic removal rate being 65.7%, and protein loss being 2.33%; the optimum condition for Zr-D401 is that T=25 ℃, pH = 8, resin additive amount= 1 g (50 mL)-1, and contact time=10 h, the corresponding arsenic removal rate being 70.3%, and protein loss being 4.65%. These results show that both of the two resins are effective in arsenic removal for preserving useful substance. Our research provides scientific evidence and advances in the processing technology for heavy metal removal in shellfish.展开更多
基金funding support from the National Natural Science Foundation of China (No. 81873014)。
文摘Objective To reduce the toxicity and side effects of arsenic trioxide(ATO)and provide a new approach for the treatment of primary liver cancer,a folic acid-modified calcium arsenite liposomal“target-controlled”drug delivery system(FA-LP-CaAs)was fabricated using the reverse microemulsion method.Methods A Malvern particle size analyzer and a transmission electron microscope were employed to determine the particle size,distribution,zeta potential and morphology of FA-LP-CaAs.Further,inductively coupled plasma emission spectrometry was employed to determine the drug loading capacity,entrapment efficiency,and in vitro release behavior of FA-LP-CaAs.To determine its toxicity in human hepatoma cells(HepG2)and human normal hepatocytes(LO2)and its effect on HepG2 cell cycle and apoptosis,the MTT method was used.Laser confocal and flow cytometry were also employed to determine the uptake of FA-LP-CaAs by cells.After establishing a mouse liver cancer model,the in vivo distribution of the drug included in the formulation was investigated using in vivo fluorescence.To evaluate the liver cancer targeting and anti-tumor effects of FALP-CaAs in vivo,the distribution of ATO in tissues and changes in tumor volume and body weight after liposomal administration were investigated using hematoxylin-eosin(HE)-stained tumor sections.Results The particle size,zeta potential and PDI of FA-LP-CaAs were(122.67±2.18)nm,(12.81±0.75)mV and 0.22±0.01,respectively,while its drug loading capacity was 18.49%±1.14%.In vitro experimental results revealed that FA-LP-CaAs had a strong killing effect on HepG2 cells.Further,the cell uptake capacity of this formulation was found to improve.Based on in vivo assessments,FA-LP-CaAs could significantly increase the distribution of ATO in tumor sites and inhibit tumor growth.Conclusions Herein,an FA-LP-CaAs formulation was successfully fabricated.This liposomal drug delivery system had a round appearance,uniform particle size,good polydispersity coefficient,evident“core-shell”structure,high drug loading capacity and pH response,tumor targeted drug delivery and sustained drug release.These findings support further research and the application of ATO as an anti-liver cancer prodrug and provide a new method for the treatment of liver cancer.
基金supported by National Key Technologies R&D Program of China(2008 BAD94B08)
文摘The present study investigated the removal of inorganic arsenic from Pinctada martensii enzymatic hydrolysate through unmodified resin (D296) and Zr(IV)-loaded chelating resin (Zr-D401). By loading Zr to macroporous chelating resin D401, the as exchange adsorption active sites are generated. This transforms D401 from a material that does not have the arsenic adsorption capacity into a material that has excellent arsenic exchange adsorption capacity. The static adsorption experiments were conducted to investigate the optimal removal condition for D296 and Zr-D401. The experimental results show that: the optimum condition for D296 is that T= 25℃, pH= 5, resin additive amount= 1 g (50 mL)-1, and contact time = 10 h, the corresponding arsenic removal rate being 65.7%, and protein loss being 2.33%; the optimum condition for Zr-D401 is that T=25 ℃, pH = 8, resin additive amount= 1 g (50 mL)-1, and contact time=10 h, the corresponding arsenic removal rate being 70.3%, and protein loss being 4.65%. These results show that both of the two resins are effective in arsenic removal for preserving useful substance. Our research provides scientific evidence and advances in the processing technology for heavy metal removal in shellfish.