Iron-modified biochar(FeOS)is known to be effective at immobilization of arsenic(As)in soils.A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice sy...Iron-modified biochar(FeOS)is known to be effective at immobilization of arsenic(As)in soils.A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice system at different growth stages of rice with different pollution levels.The results showed that Fe concentration decreased and As concentration increased in paddy soils with the FeOS addition,especially in 120 mg/kg As treatment,the As concentration decreased by 16.46%and 30.56%at the maturity stage with 0.5%and 1%FeOS additions,respectively.Compared with the control,the application of FeOS reduced the arsenic content in rice tissues and increased the biomass,with the root biomass increased by 12.68%and the shoot biomass was increased by 8.94%with the addition of 1%FeOS.This may be related to the promotion of iron plaque formation and the transformation of microbial community structure in FeOS treatments,in accordance with the result of gene abundance and Fe/As contents of iron plaque in the study.This study is expected to provide further support and theoretical basis for the application of FeOS in the remediation of As contaminated paddy soil.展开更多
Scorodite(FeAsO4·2H2O)is the most popular phase for arsenic(As)immobilization while the reductive dissolution of Fe(Ⅲ)to Fe(Ⅱ)will promote As release.In the present study,an equilibrium between Fe(Ⅲ)...Scorodite(FeAsO4·2H2O)is the most popular phase for arsenic(As)immobilization while the reductive dissolution of Fe(Ⅲ)to Fe(Ⅱ)will promote As release.In the present study,an equilibrium between Fe(Ⅲ)and Fe(Ⅱ)was achieved in scorodite preparation system by introducing certain alcohol(methanol,ethanol,isopropanol or tert-butanol),and thus a new mixed-valent iron arsenate black crystal formulated as Fe(Ⅱ)(5.2)Fe(Ⅲ)(8.8)(HAsO4)4(AsO4)8·H2O was prepared.In comparison with scorodite,the black crystal has higher As content(36.4%,mass fraction)and lower crystal water content(0.73%,mass fraction).Additionally,the leaching concentration of As can be lower than the threshold value(5 mg/L)regulated by identification standards for hazardous wastes of China(GB 5080.3-2007).Therefore,this new mixed-valent iron arsenate crystal could be classified as a non-hazardous and promising As-bearing phase in environmental applications.展开更多
A small molecular organic depressor glycerine-xanthate was synthesized. The effect of glycerine-xanthate on the flotation of sulfide minerals was investigated based on a function of pH value and concentration of glyce...A small molecular organic depressor glycerine-xanthate was synthesized. The effect of glycerine-xanthate on the flotation of sulfide minerals was investigated based on a function of pH value and concentration of glycerine-xanthate through flotation experiments in the presence and absence of Cu^2+. The results show that glycerinee-xanthate has a strong dressing effect on marmatite at pH〉6 and on arsenopyrite in weak acid and base conditions with butyl-xanthate as collector. In the presence of glycerine -xanthate, marmatite is activated by addition of Cu^2+, but arsenopyrite cannot be activated and remains unfloatable. So the selective separation can be achieved for two minerals. The depression of glycerine-xanthate on sulfide minerals was discussed based on the radical electronegative calculation and the theory of HSAB. Infrared spectrum shows that there are some -OH and-CSS-in glycedne-xanthate molecule, which competes with butyl-xanthate on the mineral surface. As a result of many hydrophilic groups in glycerine-xanthate, the surfaces of marmatite and arsenopyrite become hydrophilic, thus the flotation of marmatite and arsenopyrite is depressed. The collector is adsorbed preferentially on the surface of marmatite and it shows a better floatability in the presence of Cu^2+, whereas, the surface of arsenopyrite absorbs glycerine-xanthate and the flotation of arsenopyrite is depressed by glycerine-xanthate.展开更多
The microstructure and magnetic properties of iron arsenide(FeAs) with coarse-grain and nanocrystalline structure were investigated. Coarse-grain FeAs was synthesized through high-energy ball milling and heat treatmen...The microstructure and magnetic properties of iron arsenide(FeAs) with coarse-grain and nanocrystalline structure were investigated. Coarse-grain FeAs was synthesized through high-energy ball milling and heat treatment. Nanocrystalline FeAs was obtained by ball milling of coarse-grain FeAs. The results suggest that the reduced grain size of FeAs(from >100 to 32.4 nm) is accompanied by the introduction of internal strains up to 0.568% with ball milling time from 0 to 32 h. The magnetic properties of FeAs show that the coercivity is reduced from 29.2 to 15.6 kA/m and the magnetization is increased over time of milling. The low coercivity is mainly due to the small grain size stemmed from ball milling, while the increase of magnetization is primarily caused by the change of lattice parameters of FeAs and the emergence of superparamagnetic phase at the same time.展开更多
The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental ...The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental risk and realizing resource recovery.The formation of arsenic−copper-containing particles was simulated,the method of in-situ decomposition of arsenic−copper-containing particles by pyrite was proposed,and the decomposition mechanism was confirmed.It was found that particles with high arsenic content were formed in the simulated HRSG,and copper arsenate was liable for the high arsenic content.Pyrite promoted the sulfation of copper,leading to the in-situ decomposition of copper arsenate.In this process,gaseous arsenic was released,and thus the separation of arsenic and copper was realized.展开更多
Physicochemical properties and leaching behaviors of two typical arsenic-bearing lime?ferrate sludges(ABLFS),waste acid residue(WAR)and calcium arsenate residue(CAR),are comprehensively described.The chemical composit...Physicochemical properties and leaching behaviors of two typical arsenic-bearing lime?ferrate sludges(ABLFS),waste acid residue(WAR)and calcium arsenate residue(CAR),are comprehensively described.The chemical composition,morphological features,phase composition and arsenic occurrence state of WAR and CAR are analyzed by ICP?AES,SEM?EDS,XRD,XPS and chemical phase analysis.The toxicity leaching test and three-stage BCR sequential extraction procedure are utilized to investigate arsenic leaching behaviors.The results show that the contents of arsenic in WAR and CAR are2.5%and21.2%and mainly present in the phases of arsenate and arsenic oxides dispersed uniformly or agglomerated in amorphous particles.The leaching concentrations of arsenic excess119and1063times of TCLP standard regulatory level with leaching rates of47.66%and50.15%for WAR and CAR,respectively.About90%of extracted arsenic is in the form of acid soluble and reducible,which is the reason of high arsenic leaching toxicity and environmental activity of ABLFS.This research provides comprehensive information on harmless disposal of ABLFS from industrial wastewater treatment of lime?ferrate process.展开更多
The interaction mechanism between sodium arsenate and fayalite-type copper slag at 1200℃was investigated through XRD,XPS,HRTEM,TCLP and other technical means and methods.The results indicated that the proportions of ...The interaction mechanism between sodium arsenate and fayalite-type copper slag at 1200℃was investigated through XRD,XPS,HRTEM,TCLP and other technical means and methods.The results indicated that the proportions of sodium arsenate in the slag and flue gas phases were approximately 30%and 70%,respectively.The addition of sodium arsenate depolymerized the fayalite structure and changed it from a crystalline state to an amorphous state.The fayalite structural changes indicated that the[AsO_(4)]tetrahedron in sodium arsenate combined with the[SiO_(4)]tetrahedron and[FeO_(4)]tetrahedron through bridging oxygen to form a silicate glass structure.The TCLP test results of the samples before and after the high temperature reaction of fayalite and sodium arsenate showed that after high temperature reaction,fayalite could effectively reduce the leaching toxicity of sodium arsenate,reducing the leaching concentration of arsenic from 3025.52 to 12.8 mg/L before and after reaction,respectively.展开更多
The continued effect of the pyrite-tailing oxidation on the mobility of arsenic, lead, zinc, cadmium, and copper was studied in a carbonated soil under natural conditions, with the experimental plot preserved with a l...The continued effect of the pyrite-tailing oxidation on the mobility of arsenic, lead, zinc, cadmium, and copper was studied in a carbonated soil under natural conditions, with the experimental plot preserved with a layer of tailing covering the soil during three years. The experimental area is located in Southern Spain and was affected by a pyrite-mine spill. The climate in the area is typically Mediterranean, which determines the rate of soil alteration and element mobility. The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties. In this period, lead concentrated in the first 5 mm of the soil, with concentrations higher than 1500 mg kg?1, mainly associated to the neoformation of plumbojarosite. Arsenic was partially leached from the first 5 mm and mainly concentrated between 5–10 mm in the soil, with maximum values of 1239 mg kg-1; the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite, schwertmannite) and oxyhydroxides (goethite, ferrihydrite), both with a variable degree of crystallinity. The mobility of Zn, Cd, and Cu was highly affected by pH, producing a stronger leaching in depth; their retention was related to the forms of precipitated aluminium and, in the case of Cu, also to the neoformation of hydroxysulfate.展开更多
The sulfide passivation film produced on the surface seriously prevents further reaction in the process of using monoclinic pyrrhotite(MPr)to treat heavy metal ions in wastewater.Ultrasonic technology was introduced t...The sulfide passivation film produced on the surface seriously prevents further reaction in the process of using monoclinic pyrrhotite(MPr)to treat heavy metal ions in wastewater.Ultrasonic technology was introduced to assist MPr to recover the copper ions.XPS result proves that CuS products exist on the surface of MPr.XRD and SEM results show that the CuS on the particles’surface is stripped under ultrasonic condition.The kinetics results indicate that the reaction under both conventional and ultrasonic conditions conform to the Avrami model.The reaction process changes from diffusion control to chemical reaction control under the ultrasonic condition as the solid layer is stripped off.The presence of ultrasonic significantly reduces the acidity and temperature required for the reaction and enhances the utilization efficiency of MPr;by controlling the amount of MPr,the removal rates of copper and arsenic in copper smelting dust leachate exceed 99%and 95%,respectively.展开更多
Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL d...Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL derivatives were synthesised by a chemical synthesis method, and two types of AHL derivatives were measured and screened by crystal violet staining assay, which have more obvious inhibitory effects on A. ferrooxidans biofilms under arsenic environment. Their structures were verified through IR and NMR identification. The morphological changes of A. ferrooxidans under the influence of the AHL derivatives were compared. In addition, the effects of AHL derivatives(0.1 μg/mL and 1 μg/mL) on membrane formation of A. ferrooxidans under high concentration of arsenic resistance(1,600 mg/L) were explored. Solid experimental data firstly showed that a portion of logarithmic microorganisms were ruptured under the effect of high arsenic concentration. Secondly, the volume of the cell shrank and the number of extracellular polymeric substances decreased after the addition of the AHL derivatives at high concentrations. Therefore, we found here that two derivatives used at concentrations of 0.1 μg/mL and 1 μg/m L accompanied with high concentration of arsenic can both effectively restrict biofilms formation by A. ferrooxidans.展开更多
A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching...A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.展开更多
Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was stu...Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.展开更多
The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under...The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under greenhouse conditions. Arsenic was applied to soil at 50 and 100 mg/kg, with untreated soil used as a control having an average As concentration of 8.5 mg/kg. It was demonstrated that the ratio of ROL in root tips to that at the root base slightly decreased with increasing As concentration, suggesting that the spatial ROL patterns in these groups may be shifted from the “tight” barrier towards the “partial” barrier form. Furthermore, increasing As concentration led to a increase in Fe plaque formation on root surfaces. In addition, root As concentrations of genotypes in 50 and 100 mg/kg As treatments were significantly higher than that of control treatment (P〈0.05). Grain As concentration of genotype Nanyangzhan (with lower ROL) was significantly higher (P〈0.05) than that of genotype CNT87059-3 with higher ROL.展开更多
Arsenic(As)removal from smelting acidic wastewater is an urgent task.The most common method is oxidation of trivalent As(III)to pentavalent As(V)subsequently precipitated by ferric(Fe(III))salts.Foundations of redox b...Arsenic(As)removal from smelting acidic wastewater is an urgent task.The most common method is oxidation of trivalent As(III)to pentavalent As(V)subsequently precipitated by ferric(Fe(III))salts.Foundations of redox behavior and chemical species are of great importance for understanding As removal.In this work,cyclic voltammetry(CV)and UV?Vis spectroscopy were used for laboratory observation;meanwhile HSC and MINTEQ software were employed for theoretical analyses.It is found that As(III)oxidation,a multiple electron transfer reaction,is diffusion-controlled.The oxidation over-potential is very high(about0.9V)in sulfuric acid solutions(pH1.0).In addition,Fe(III)?As(V)complexes are evidenced by UV?Vis spectra and chemical species analyses in series of Fe(III)?As(V)?H2SO4?H2O solutions.Therefore,the Fe(III)and As(V)species distribution against pH values are determined and a newφ?pH diagram with inclusion of Fe?As complexes is consequently compiled based on thermodynamic data predicted by other researchers.展开更多
FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated...FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%.展开更多
The galvanic interaction of arsenopyrite−magnetite in acidic culture medium was investigated by electrochemical measurements,X-ray photoelectron spectroscopy characterization and leaching experiments.The results indic...The galvanic interaction of arsenopyrite−magnetite in acidic culture medium was investigated by electrochemical measurements,X-ray photoelectron spectroscopy characterization and leaching experiments.The results indicated that the rest potential of magnetite was 321 mV,which was more anodic than 223 mV of arsenopyrite,and the galvanic current was 7.40μA,verifying the existence of the galvanic interaction between arsenopyrite and magnetite.The galvanic potential and polarization curves suggested that the redox behaviors of arsenopyrite dominated the overall galvanic interaction.The galvanic interaction enhanced the electrochemical dissolution of arsenopyrite with the generation of more oxidation products(S^(0),SO_(3)^(2−),SO_(4)^(2−)and AsO_(3)^(3−)) on arsenopyrite and an increase in the chemical reactivity of the surface.Leaching experiments of 6 days showed that the presence of magnetite improved the arsenic release from arsenopyrite by 30 mg/L,and further confirmed the enhanced oxidation of arsenopyrite when coupled with magnetite.展开更多
Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried o...Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried out "in situ" by the synthesis and deposition of mesoporous ferrihydrite. Natural iron-rich aluminosilicate was used as reference. All samples were characterized by X-ray diffraction, Raman spectroscopy, BET N2-adsorption, SEM-EDS microscopy and ICP chemical analysis. Experimental results of arsenic sorption showed that iron-poor raw materials were not active, unlike iron activated samples. The iron loading in all activated samples was below 5% (expressed as Fe203), whereas the removal capacity of these samples reaches between 200-700 gg of As by g of adsorbent, after reusing between 17 cycles and 70 cycles up to adsorbent saturation. Differences can be associated to mineral structure and to the surface charge modification by iron deposition, affecting the attraction of the As-oxoanion. On the basis of low-cost raw materials, the easy chemical process for activation shows that these materials are potentially attractive for As(V) removal. Likewise, the activation of clay minerals, with natural high content of iron, seems to be a good strategy to enhance the arsenic adsorption ability and consequently the useful life of the adsorbent.展开更多
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(41771512)supported by the National Natural Science Foundation of ChinaProject(2018RS3004)supported by Hunan Science&Technology Innovation Program,China。
文摘Iron-modified biochar(FeOS)is known to be effective at immobilization of arsenic(As)in soils.A pot experiment was conducted to investigate the effects of FeOS on As availability and ttransportation in the soil-rice system at different growth stages of rice with different pollution levels.The results showed that Fe concentration decreased and As concentration increased in paddy soils with the FeOS addition,especially in 120 mg/kg As treatment,the As concentration decreased by 16.46%and 30.56%at the maturity stage with 0.5%and 1%FeOS additions,respectively.Compared with the control,the application of FeOS reduced the arsenic content in rice tissues and increased the biomass,with the root biomass increased by 12.68%and the shoot biomass was increased by 8.94%with the addition of 1%FeOS.This may be related to the promotion of iron plaque formation and the transformation of microbial community structure in FeOS treatments,in accordance with the result of gene abundance and Fe/As contents of iron plaque in the study.This study is expected to provide further support and theoretical basis for the application of FeOS in the remediation of As contaminated paddy soil.
基金Project(51634010)supported by the Key Project of National Natural Science Foundation of ChinaProject(51304251)supported by the National Natural Science Foundation of ChinaProject(201509050)supported by Special Program on Environmental Protection for Public Welfare of China
文摘Scorodite(FeAsO4·2H2O)is the most popular phase for arsenic(As)immobilization while the reductive dissolution of Fe(Ⅲ)to Fe(Ⅱ)will promote As release.In the present study,an equilibrium between Fe(Ⅲ)and Fe(Ⅱ)was achieved in scorodite preparation system by introducing certain alcohol(methanol,ethanol,isopropanol or tert-butanol),and thus a new mixed-valent iron arsenate black crystal formulated as Fe(Ⅱ)(5.2)Fe(Ⅲ)(8.8)(HAsO4)4(AsO4)8·H2O was prepared.In comparison with scorodite,the black crystal has higher As content(36.4%,mass fraction)and lower crystal water content(0.73%,mass fraction).Additionally,the leaching concentration of As can be lower than the threshold value(5 mg/L)regulated by identification standards for hazardous wastes of China(GB 5080.3-2007).Therefore,this new mixed-valent iron arsenate crystal could be classified as a non-hazardous and promising As-bearing phase in environmental applications.
基金Project(50234010) supported by the National Natural Science Foundation of China
文摘A small molecular organic depressor glycerine-xanthate was synthesized. The effect of glycerine-xanthate on the flotation of sulfide minerals was investigated based on a function of pH value and concentration of glycerine-xanthate through flotation experiments in the presence and absence of Cu^2+. The results show that glycerinee-xanthate has a strong dressing effect on marmatite at pH〉6 and on arsenopyrite in weak acid and base conditions with butyl-xanthate as collector. In the presence of glycerine -xanthate, marmatite is activated by addition of Cu^2+, but arsenopyrite cannot be activated and remains unfloatable. So the selective separation can be achieved for two minerals. The depression of glycerine-xanthate on sulfide minerals was discussed based on the radical electronegative calculation and the theory of HSAB. Infrared spectrum shows that there are some -OH and-CSS-in glycedne-xanthate molecule, which competes with butyl-xanthate on the mineral surface. As a result of many hydrophilic groups in glycerine-xanthate, the surfaces of marmatite and arsenopyrite become hydrophilic, thus the flotation of marmatite and arsenopyrite is depressed. The collector is adsorbed preferentially on the surface of marmatite and it shows a better floatability in the presence of Cu^2+, whereas, the surface of arsenopyrite absorbs glycerine-xanthate and the flotation of arsenopyrite is depressed by glycerine-xanthate.
基金the financial support from National Key Technologies R&D Program of China (No. 2018YFC1900302)。
文摘The microstructure and magnetic properties of iron arsenide(FeAs) with coarse-grain and nanocrystalline structure were investigated. Coarse-grain FeAs was synthesized through high-energy ball milling and heat treatment. Nanocrystalline FeAs was obtained by ball milling of coarse-grain FeAs. The results suggest that the reduced grain size of FeAs(from >100 to 32.4 nm) is accompanied by the introduction of internal strains up to 0.568% with ball milling time from 0 to 32 h. The magnetic properties of FeAs show that the coercivity is reduced from 29.2 to 15.6 kA/m and the magnetization is increased over time of milling. The low coercivity is mainly due to the small grain size stemmed from ball milling, while the increase of magnetization is primarily caused by the change of lattice parameters of FeAs and the emergence of superparamagnetic phase at the same time.
基金financially supported by the National Science Fund for Excellent Young Scholars of China(No.52022111)the National Key Research and Development Program of China(Nos.2017YFC0210401,2018YFC1900306)+1 种基金the Distinguished Young Scholars of China(No.51825403)the National Natural Science Foundation of China(Nos.51634010,51974379).
文摘The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental risk and realizing resource recovery.The formation of arsenic−copper-containing particles was simulated,the method of in-situ decomposition of arsenic−copper-containing particles by pyrite was proposed,and the decomposition mechanism was confirmed.It was found that particles with high arsenic content were formed in the simulated HRSG,and copper arsenate was liable for the high arsenic content.Pyrite promoted the sulfation of copper,leading to the in-situ decomposition of copper arsenate.In this process,gaseous arsenic was released,and thus the separation of arsenic and copper was realized.
基金Project(201509050)supported by Special Program on Environmental Protection for Public Welfare,ChinaProjects(51474247,51634010)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by Grants from the Project of Innovation-driven Plan in Central South University,China
文摘Physicochemical properties and leaching behaviors of two typical arsenic-bearing lime?ferrate sludges(ABLFS),waste acid residue(WAR)and calcium arsenate residue(CAR),are comprehensively described.The chemical composition,morphological features,phase composition and arsenic occurrence state of WAR and CAR are analyzed by ICP?AES,SEM?EDS,XRD,XPS and chemical phase analysis.The toxicity leaching test and three-stage BCR sequential extraction procedure are utilized to investigate arsenic leaching behaviors.The results show that the contents of arsenic in WAR and CAR are2.5%and21.2%and mainly present in the phases of arsenate and arsenic oxides dispersed uniformly or agglomerated in amorphous particles.The leaching concentrations of arsenic excess119and1063times of TCLP standard regulatory level with leaching rates of47.66%and50.15%for WAR and CAR,respectively.About90%of extracted arsenic is in the form of acid soluble and reducible,which is the reason of high arsenic leaching toxicity and environmental activity of ABLFS.This research provides comprehensive information on harmless disposal of ABLFS from industrial wastewater treatment of lime?ferrate process.
基金the financial supports from the National Natural Science Foundation of China(No.51634010)National Key R&D Program of China(No.2018YFC1900300).
文摘The interaction mechanism between sodium arsenate and fayalite-type copper slag at 1200℃was investigated through XRD,XPS,HRTEM,TCLP and other technical means and methods.The results indicated that the proportions of sodium arsenate in the slag and flue gas phases were approximately 30%and 70%,respectively.The addition of sodium arsenate depolymerized the fayalite structure and changed it from a crystalline state to an amorphous state.The fayalite structural changes indicated that the[AsO_(4)]tetrahedron in sodium arsenate combined with the[SiO_(4)]tetrahedron and[FeO_(4)]tetrahedron through bridging oxygen to form a silicate glass structure.The TCLP test results of the samples before and after the high temperature reaction of fayalite and sodium arsenate showed that after high temperature reaction,fayalite could effectively reduce the leaching toxicity of sodium arsenate,reducing the leaching concentration of arsenic from 3025.52 to 12.8 mg/L before and after reaction,respectively.
基金Project supported by the Science and Technology Ministry of Spain (Nos.REN 2003-03615 and CGL2006-10233)
文摘The continued effect of the pyrite-tailing oxidation on the mobility of arsenic, lead, zinc, cadmium, and copper was studied in a carbonated soil under natural conditions, with the experimental plot preserved with a layer of tailing covering the soil during three years. The experimental area is located in Southern Spain and was affected by a pyrite-mine spill. The climate in the area is typically Mediterranean, which determines the rate of soil alteration and element mobility. The intense alteration processes that occurred in the soil during three years caused important changes in its morphology and a strong degradation of the main soil properties. In this period, lead concentrated in the first 5 mm of the soil, with concentrations higher than 1500 mg kg?1, mainly associated to the neoformation of plumbojarosite. Arsenic was partially leached from the first 5 mm and mainly concentrated between 5–10 mm in the soil, with maximum values of 1239 mg kg-1; the retention of arsenates was related to the neoformation of iron hydroxysulfates (jarosite, schwertmannite) and oxyhydroxides (goethite, ferrihydrite), both with a variable degree of crystallinity. The mobility of Zn, Cd, and Cu was highly affected by pH, producing a stronger leaching in depth; their retention was related to the forms of precipitated aluminium and, in the case of Cu, also to the neoformation of hydroxysulfate.
基金the National Key Scientific Research Project,China(Nos.2018YFC1901601,2018YFC1901602)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0307)+2 种基金the National Natural Science Foundation of China(No.51804340)the Innovation-driven Plan of Central South University,China(No.2018CX036)the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China,and Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China(No.2018TP1002).
文摘The sulfide passivation film produced on the surface seriously prevents further reaction in the process of using monoclinic pyrrhotite(MPr)to treat heavy metal ions in wastewater.Ultrasonic technology was introduced to assist MPr to recover the copper ions.XPS result proves that CuS products exist on the surface of MPr.XRD and SEM results show that the CuS on the particles’surface is stripped under ultrasonic condition.The kinetics results indicate that the reaction under both conventional and ultrasonic conditions conform to the Avrami model.The reaction process changes from diffusion control to chemical reaction control under the ultrasonic condition as the solid layer is stripped off.The presence of ultrasonic significantly reduces the acidity and temperature required for the reaction and enhances the utilization efficiency of MPr;by controlling the amount of MPr,the removal rates of copper and arsenic in copper smelting dust leachate exceed 99%and 95%,respectively.
基金Project(31660026)supported by the National Natural Science Foundation of ChinaProject(lzujbky-2016-152)supported by the National Basic Research Program of China
文摘Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL derivatives were synthesised by a chemical synthesis method, and two types of AHL derivatives were measured and screened by crystal violet staining assay, which have more obvious inhibitory effects on A. ferrooxidans biofilms under arsenic environment. Their structures were verified through IR and NMR identification. The morphological changes of A. ferrooxidans under the influence of the AHL derivatives were compared. In addition, the effects of AHL derivatives(0.1 μg/mL and 1 μg/mL) on membrane formation of A. ferrooxidans under high concentration of arsenic resistance(1,600 mg/L) were explored. Solid experimental data firstly showed that a portion of logarithmic microorganisms were ruptured under the effect of high arsenic concentration. Secondly, the volume of the cell shrank and the number of extracellular polymeric substances decreased after the addition of the AHL derivatives at high concentrations. Therefore, we found here that two derivatives used at concentrations of 0.1 μg/mL and 1 μg/m L accompanied with high concentration of arsenic can both effectively restrict biofilms formation by A. ferrooxidans.
基金Projects(51304251,51374237)supported by the National Natural Science Foundation of ChinaProject(201509050)supported by Special Program on Environmental Protection for Public Welfare,ChinaProjects(2012FJ1010,2014FJ1011)supported by the Key Projects of Science and Technology of Hunan Province,China
文摘A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.
基金Project(51074182)supported by the National Natural Science Foundation of ChinaProject(2014M550422)supported by the Postdoctoral Science Foundation,ChinaProject(2015JJ3149)supported by the Natural Science Foundation of Hunan Province,China
文摘Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.
基金Projects(41201493,31300815)supported by the National Natural Science Foundation of China
文摘The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under greenhouse conditions. Arsenic was applied to soil at 50 and 100 mg/kg, with untreated soil used as a control having an average As concentration of 8.5 mg/kg. It was demonstrated that the ratio of ROL in root tips to that at the root base slightly decreased with increasing As concentration, suggesting that the spatial ROL patterns in these groups may be shifted from the “tight” barrier towards the “partial” barrier form. Furthermore, increasing As concentration led to a increase in Fe plaque formation on root surfaces. In addition, root As concentrations of genotypes in 50 and 100 mg/kg As treatments were significantly higher than that of control treatment (P〈0.05). Grain As concentration of genotype Nanyangzhan (with lower ROL) was significantly higher (P〈0.05) than that of genotype CNT87059-3 with higher ROL.
基金Projects (51304251,51374237) supported by the National Natural Science Foundation of ChinaProject (201509050) supported by Special Program on Environmental Protection for Public Welfare,China
文摘Arsenic(As)removal from smelting acidic wastewater is an urgent task.The most common method is oxidation of trivalent As(III)to pentavalent As(V)subsequently precipitated by ferric(Fe(III))salts.Foundations of redox behavior and chemical species are of great importance for understanding As removal.In this work,cyclic voltammetry(CV)and UV?Vis spectroscopy were used for laboratory observation;meanwhile HSC and MINTEQ software were employed for theoretical analyses.It is found that As(III)oxidation,a multiple electron transfer reaction,is diffusion-controlled.The oxidation over-potential is very high(about0.9V)in sulfuric acid solutions(pH1.0).In addition,Fe(III)?As(V)complexes are evidenced by UV?Vis spectra and chemical species analyses in series of Fe(III)?As(V)?H2SO4?H2O solutions.Therefore,the Fe(III)and As(V)species distribution against pH values are determined and a newφ?pH diagram with inclusion of Fe?As complexes is consequently compiled based on thermodynamic data predicted by other researchers.
基金Projects(2018YFC1900305,2018YFC1903301)supported by the National Key R&D Program of ChinaProject(51825403)supported by the National Natural Science Foundation for Distinguished Young Scholars of China+1 种基金Project(51634010)supported by the National Natural Science Foundation of ChinaProject(2017RS3010)supported by the Science and Technology Program of Hunan Province,China
文摘FeS2/Fe composites were mechanochemically prepared with iron powder and pyrite for the stabilization of ferrite arsenate sludge(FAS).The effects of preparation parameters on stabilization performance were investigated.The results show that the optimum conditions are FeS2/Fe molar ratio of 5:5,milling time of 2 h,ball-to-material mass ratio of 15:1 and milling with stainless steel ball.Then,the composites were characterized by XRD,SEM,FTIR,etc.The physicochemical properties of FeS2/Fe mixture change dramatically,which is responsible for its excellent performance.Finally,the stabilization process of FAS was optimized.When the FAS is mixed with composites at mass ratio of 4:1 and milled for 30 min,the As leaching concentration of FAS can be reduced from 639.15 to 4.74 mg/L with the stabilization ratio of 99.2%.
基金the Natural Science Basic Research Program of Shaanxi,China(No.2020JQ-666)the National Natural Science Foundation of China(Nos.52004198,51934009).
文摘The galvanic interaction of arsenopyrite−magnetite in acidic culture medium was investigated by electrochemical measurements,X-ray photoelectron spectroscopy characterization and leaching experiments.The results indicated that the rest potential of magnetite was 321 mV,which was more anodic than 223 mV of arsenopyrite,and the galvanic current was 7.40μA,verifying the existence of the galvanic interaction between arsenopyrite and magnetite.The galvanic potential and polarization curves suggested that the redox behaviors of arsenopyrite dominated the overall galvanic interaction.The galvanic interaction enhanced the electrochemical dissolution of arsenopyrite with the generation of more oxidation products(S^(0),SO_(3)^(2−),SO_(4)^(2−)and AsO_(3)^(3−)) on arsenopyrite and an increase in the chemical reactivity of the surface.Leaching experiments of 6 days showed that the presence of magnetite improved the arsenic release from arsenopyrite by 30 mg/L,and further confirmed the enhanced oxidation of arsenopyrite when coupled with magnetite.
文摘Low-cost adsorbents constituted by Fe-modified-aluminosilicates (laminar and zeolite type minerals) were developed and characterized to be used in the arsenic removal from groundwater. Iron activation was carried out "in situ" by the synthesis and deposition of mesoporous ferrihydrite. Natural iron-rich aluminosilicate was used as reference. All samples were characterized by X-ray diffraction, Raman spectroscopy, BET N2-adsorption, SEM-EDS microscopy and ICP chemical analysis. Experimental results of arsenic sorption showed that iron-poor raw materials were not active, unlike iron activated samples. The iron loading in all activated samples was below 5% (expressed as Fe203), whereas the removal capacity of these samples reaches between 200-700 gg of As by g of adsorbent, after reusing between 17 cycles and 70 cycles up to adsorbent saturation. Differences can be associated to mineral structure and to the surface charge modification by iron deposition, affecting the attraction of the As-oxoanion. On the basis of low-cost raw materials, the easy chemical process for activation shows that these materials are potentially attractive for As(V) removal. Likewise, the activation of clay minerals, with natural high content of iron, seems to be a good strategy to enhance the arsenic adsorption ability and consequently the useful life of the adsorbent.