The Si-TaSi2 eutectic in situ composite for field emission is prepared by electron beam floating zone melting (EBFZM) technique on the basis of Czochralski (CZ) crystal growth technique. The directional solidification...The Si-TaSi2 eutectic in situ composite for field emission is prepared by electron beam floating zone melting (EBFZM) technique on the basis of Czochralski (CZ) crystal growth technique. The directional solidification microstructure and the field emission properties of the Si-TaSi2 eutectic in situ composite prepared by two kinds of crystal growth techniques have been systematically tested and compared. Researches demonstrated that the solidification microstructure of EBFZM can be fined obviously be-cause of the relatively high solidification rate and very high temperature gradient, i.e. both the diameter and inter-rod spacing of the TaSi2 fibers prepared by EBFZM technique were decreased, and the density and the volume fraction of the TaSi2 fibers prepared by EBFZM technique were increased in comparison with that of the TaSi2 fibers prepared by CZ method. Therefore the field emission property of the Si-TaSi2 eutectic in situ composite prepared by EBFZM can be improved greatly, which exhibits better field emission uniformity and straighter F-N curve.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50102004)the Aeronautical Science Foundation of China (Grant No. 04G53048)the Developing Program for Outstanding Persons in NPU
文摘The Si-TaSi2 eutectic in situ composite for field emission is prepared by electron beam floating zone melting (EBFZM) technique on the basis of Czochralski (CZ) crystal growth technique. The directional solidification microstructure and the field emission properties of the Si-TaSi2 eutectic in situ composite prepared by two kinds of crystal growth techniques have been systematically tested and compared. Researches demonstrated that the solidification microstructure of EBFZM can be fined obviously be-cause of the relatively high solidification rate and very high temperature gradient, i.e. both the diameter and inter-rod spacing of the TaSi2 fibers prepared by EBFZM technique were decreased, and the density and the volume fraction of the TaSi2 fibers prepared by EBFZM technique were increased in comparison with that of the TaSi2 fibers prepared by CZ method. Therefore the field emission property of the Si-TaSi2 eutectic in situ composite prepared by EBFZM can be improved greatly, which exhibits better field emission uniformity and straighter F-N curve.