研究全硅基光学二极管,即在硅基芯片上实现非互易光学传输,是一项具有广泛应用前景并极具技术挑战的研究课题。采用硅基谐振结构微纳器件中非线性光学效应,完成光学非互易传输,是当前实现硅基光学二极管的重要方法。结合硅基波导中的非...研究全硅基光学二极管,即在硅基芯片上实现非互易光学传输,是一项具有广泛应用前景并极具技术挑战的研究课题。采用硅基谐振结构微纳器件中非线性光学效应,完成光学非互易传输,是当前实现硅基光学二极管的重要方法。结合硅基波导中的非线性光学效应的基本原理,以及谐振结构微纳器件的基本模型,分析了硅基谐振结构微纳器件构成的光学二极管中的非互易传输问题。仿真结果表明,依靠谐振结构中的非线性光学效应产生的器件非互易特性仅存在于特定频率,这种非互易性在谐振波长附近的一段频率区域较为明显,考虑3 d B以上的非互易传输比率区间,区间宽度累计可以达到10.6 GHz以上。分析了微环耦合系数对硅基光学二极管的非互易传输比率的影响,得出结论:精确控制波导的耦合系数,使得微环工作在接近临界耦合的状态,有助于提升器件的非互易传输比率。展开更多
文摘研究全硅基光学二极管,即在硅基芯片上实现非互易光学传输,是一项具有广泛应用前景并极具技术挑战的研究课题。采用硅基谐振结构微纳器件中非线性光学效应,完成光学非互易传输,是当前实现硅基光学二极管的重要方法。结合硅基波导中的非线性光学效应的基本原理,以及谐振结构微纳器件的基本模型,分析了硅基谐振结构微纳器件构成的光学二极管中的非互易传输问题。仿真结果表明,依靠谐振结构中的非线性光学效应产生的器件非互易特性仅存在于特定频率,这种非互易性在谐振波长附近的一段频率区域较为明显,考虑3 d B以上的非互易传输比率区间,区间宽度累计可以达到10.6 GHz以上。分析了微环耦合系数对硅基光学二极管的非互易传输比率的影响,得出结论:精确控制波导的耦合系数,使得微环工作在接近临界耦合的状态,有助于提升器件的非互易传输比率。