In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in v...In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in various power electronic systems.In order to improve the performance of the 4H-SiC power device,a novel ultrahigh-voltage(UHV)4H-SiC merged p-type/intrinsic/n-type(PiN)Schottky(MPS)diode with three-dimensional(3D)p-type buried layers(PBL)(3D-PBL MPS)is proposed and investigated by numerical simulation.The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL(PBL-free MPS).However,when the 3D-PBL MPS is in the reverse blocking state,the 3D PBL can transfer the peak electric field(E_(peak))into a deeper position in the body of the epitaxial layer,and enhance the ability of the device to shield the high electric field at the Schottky contact interface(E_(S)),so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002%of that of the PBL-free MPS.Meanwhile,the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL(2D-PBL MPS),and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL.All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.展开更多
The silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent neutron detectors. We have fabricated the thin-film-coated single Si-PIN neutron detectors and stacke...The silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent neutron detectors. We have fabricated the thin-film-coated single Si-PIN neutron detectors and stacked ones coupled in series and parallel in this work. The stacked detectors show the advantage of improving the detection efficiency of neutron detecting, which essentially attributes to the increase of the effective detection area. It is shown that the stacked detector in series has more superior performance than the parallel one. This work provides a feasible method to develop solid-state semiconductor neutron detectors with high neutron detection efficiency and high response speed.展开更多
基金Project(F2020210016) supported by the Natural Science Foundation of Hebei,ChinaProject(620004153) supported by the National Natural Science Foundation of China。
文摘In the modern society,there is a strong demand for semiconductor chips,and the 4H polytype silicon carbide(4H-SiC)power device is a promising candidate for the next generation semiconductor chip,which can be used in various power electronic systems.In order to improve the performance of the 4H-SiC power device,a novel ultrahigh-voltage(UHV)4H-SiC merged p-type/intrinsic/n-type(PiN)Schottky(MPS)diode with three-dimensional(3D)p-type buried layers(PBL)(3D-PBL MPS)is proposed and investigated by numerical simulation.The static forward conduction characteristics of the 3D-PBL MPS are similar to those of the conventional 4H-SiC MPS diode without the PBL(PBL-free MPS).However,when the 3D-PBL MPS is in the reverse blocking state,the 3D PBL can transfer the peak electric field(E_(peak))into a deeper position in the body of the epitaxial layer,and enhance the ability of the device to shield the high electric field at the Schottky contact interface(E_(S)),so that the reverse leakage current of the 3D-PBL MPS at 10 kV is only 0.002%of that of the PBL-free MPS.Meanwhile,the novel 3D-PBL MPS has overcome the disadvantage in the 4H-SiC MPS diode with the two-dimensional PBL(2D-PBL MPS),and the forward conduction characteristic of the 3D-PBL MPS will not get degenerated after the device converts from the reverse blocking state to the forward conduction state because of the special depletion layer variation mechanism depending on the 3D PBL.All the simulation results show that the novel UHV 3D-PBL MPS has excellent device performance.
文摘The silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent neutron detectors. We have fabricated the thin-film-coated single Si-PIN neutron detectors and stacked ones coupled in series and parallel in this work. The stacked detectors show the advantage of improving the detection efficiency of neutron detecting, which essentially attributes to the increase of the effective detection area. It is shown that the stacked detector in series has more superior performance than the parallel one. This work provides a feasible method to develop solid-state semiconductor neutron detectors with high neutron detection efficiency and high response speed.