通过溶胶-凝胶技术,利用合成的硅氧烷封端星形有机低聚物对环氧树脂进行改性,并固化试样。研究了硅氧烷封端星形有机低聚物/环氧树脂复合材料的拉伸强度和耐热性能,并利用 SEM 分析了拉伸样断面的微观结构。结果表明:硅氧烷封端星形有...通过溶胶-凝胶技术,利用合成的硅氧烷封端星形有机低聚物对环氧树脂进行改性,并固化试样。研究了硅氧烷封端星形有机低聚物/环氧树脂复合材料的拉伸强度和耐热性能,并利用 SEM 分析了拉伸样断面的微观结构。结果表明:硅氧烷封端星形有机低聚物改性环氧树脂固化后,复合材料的拉伸强度、断裂伸长率明显提高。随着偶联剂(KBE-9103)的加入,试样的拉伸强度、断裂伸长率上升。复合材料中由于引入 Si—O—Si 网络结构,其热稳定性能也明显提高。展开更多
以羟乙基封端聚二甲基硅氧烷、聚碳酸酯二醇为起始原料,与异氟尔酮二异氰酸酯反应,制备了有机硅改性水性聚氨酯(Si-WPU);然后添加聚磷酸铵(APP),制备出一系列阻燃Si-WPU-APP。研究了APP用量对Si-WPU阻燃性能及热稳定性的影响。垂直燃烧...以羟乙基封端聚二甲基硅氧烷、聚碳酸酯二醇为起始原料,与异氟尔酮二异氰酸酯反应,制备了有机硅改性水性聚氨酯(Si-WPU);然后添加聚磷酸铵(APP),制备出一系列阻燃Si-WPU-APP。研究了APP用量对Si-WPU阻燃性能及热稳定性的影响。垂直燃烧实验表明,随着APP用量的增加,SiWPU-APP的阻燃性增加,当APP的质量分数为20%时达到UL-94 V-0级;氧指数实验表明,随着APP用量的增加,Si-WPU-APP的氧指数逐渐升高,当APP的质量分数为20%时达到30%;锥形量热仪测试表明,随着APP用量的增加,Si-WPU-APP的点燃时间逐渐延长,最大热释放速率由600 k W/m2降低到450 k W/m2且生烟速率由0.074 m2/s下降到0.044 m2/s;TG测试表明,APP的加入没有延迟Si-WPU降解的作用,但能促进C—C、C—O及Si—O键的成炭,从而大大降低材料后期的分解速率并提高成炭量。综合以上性能,聚磷酸铵的最佳质量分数为25%。展开更多
文摘通过溶胶-凝胶技术,利用合成的硅氧烷封端星形有机低聚物对环氧树脂进行改性,并固化试样。研究了硅氧烷封端星形有机低聚物/环氧树脂复合材料的拉伸强度和耐热性能,并利用 SEM 分析了拉伸样断面的微观结构。结果表明:硅氧烷封端星形有机低聚物改性环氧树脂固化后,复合材料的拉伸强度、断裂伸长率明显提高。随着偶联剂(KBE-9103)的加入,试样的拉伸强度、断裂伸长率上升。复合材料中由于引入 Si—O—Si 网络结构,其热稳定性能也明显提高。
文摘以羟乙基封端聚二甲基硅氧烷、聚碳酸酯二醇为起始原料,与异氟尔酮二异氰酸酯反应,制备了有机硅改性水性聚氨酯(Si-WPU);然后添加聚磷酸铵(APP),制备出一系列阻燃Si-WPU-APP。研究了APP用量对Si-WPU阻燃性能及热稳定性的影响。垂直燃烧实验表明,随着APP用量的增加,SiWPU-APP的阻燃性增加,当APP的质量分数为20%时达到UL-94 V-0级;氧指数实验表明,随着APP用量的增加,Si-WPU-APP的氧指数逐渐升高,当APP的质量分数为20%时达到30%;锥形量热仪测试表明,随着APP用量的增加,Si-WPU-APP的点燃时间逐渐延长,最大热释放速率由600 k W/m2降低到450 k W/m2且生烟速率由0.074 m2/s下降到0.044 m2/s;TG测试表明,APP的加入没有延迟Si-WPU降解的作用,但能促进C—C、C—O及Si—O键的成炭,从而大大降低材料后期的分解速率并提高成炭量。综合以上性能,聚磷酸铵的最佳质量分数为25%。