A novel halogen-free phosphorus–nitrogen–silicon flame retardant monomer with reactive siloxy groups,N-(diphenylphosphino)-1,1-diphenyl-N-(3-(triethoxysilyl)propyl) phosphinamine(DPTA) has been synthesized and was a...A novel halogen-free phosphorus–nitrogen–silicon flame retardant monomer with reactive siloxy groups,N-(diphenylphosphino)-1,1-diphenyl-N-(3-(triethoxysilyl)propyl) phosphinamine(DPTA) has been synthesized and was applied to the fire-resistant finishing of cotton fabrics. The molecular structure of DPTA has been well characterized by elemental analysis, FTIR,1H NMR, and ^(31)P NMR spectroscopies. The chemically-grafted cotton fabrics, which were treated with 25 wt% DPTA, were obtained and confirmed by attenuated total reflectance Fourier infrared spectroscopy(ATR-FTIR). The flame retardancy and thermal property of the treated samples were investigated by limited oxygen index(LOI), vertical flammability test(VFT), thermogravimetric analysis(TGA) and microscale combustion calorimeter(MCC). It is noted that in vertical flammability test, the treated samples extinguished immediately upon removing the ignition source, whereas the untreated one was completely burned out. Furthermore, TGA and MCC tests revealed that the treated samples produced a high char formation and a low heated release during combustion. The surface morphology of the untreated and treated samples and the char residues after LOI tests were observed by scanning electron microscopy(SEM). Therefore, all the results showed that the treated cotton fabrics with 25 wt% DPTA apparently improved the fireresistant and thermal performances.展开更多
In this paper, we report an antibody functionalized microimmunopreci- pitation (IX IP) method used for enrich lowabundant post-translational modified (PT~ proteins. The device is fabricated by inert, nontoxic and d...In this paper, we report an antibody functionalized microimmunopreci- pitation (IX IP) method used for enrich lowabundant post-translational modified (PT~ proteins. The device is fabricated by inert, nontoxic and disposable polydimethylsiloxane (PDMS) using a silane-based chemical modification protocol, which yield antibody- terminated PDMS surfaces. In this study, the IX IP device is specifically designed for the purification of carbonylated protein, a representative example here to illustrate the potential applications for any other PTMs, which could be immuno-tagged by specific antibodies. The test model in vitro oxidized bovine serum albumin (BSA) was first derivitized by dinitrophenylhydrazide (DNPH) and then captured by the anti-DNP immobilized on this Ix lP device. The surface functional group mapping was systematically analyzed and validated by fluorescence microscopy. Quantitative study of DNP-derivatized carbonylated protein capture recovery and elution efficiency of the device was also studied. We also envision that this proteome enrichment Ix IP device can be assembled with other lab-on-a-chip components, such as microelectrophoresis or micro-chromatographic devices for follow-up protein analysis. This selective enrichment of modified proteins greatly facilitates the study of low abundant protein biomarkers discovery.展开更多
基金Supported by the National Natural Science Foundation of China(21301160)
文摘A novel halogen-free phosphorus–nitrogen–silicon flame retardant monomer with reactive siloxy groups,N-(diphenylphosphino)-1,1-diphenyl-N-(3-(triethoxysilyl)propyl) phosphinamine(DPTA) has been synthesized and was applied to the fire-resistant finishing of cotton fabrics. The molecular structure of DPTA has been well characterized by elemental analysis, FTIR,1H NMR, and ^(31)P NMR spectroscopies. The chemically-grafted cotton fabrics, which were treated with 25 wt% DPTA, were obtained and confirmed by attenuated total reflectance Fourier infrared spectroscopy(ATR-FTIR). The flame retardancy and thermal property of the treated samples were investigated by limited oxygen index(LOI), vertical flammability test(VFT), thermogravimetric analysis(TGA) and microscale combustion calorimeter(MCC). It is noted that in vertical flammability test, the treated samples extinguished immediately upon removing the ignition source, whereas the untreated one was completely burned out. Furthermore, TGA and MCC tests revealed that the treated samples produced a high char formation and a low heated release during combustion. The surface morphology of the untreated and treated samples and the char residues after LOI tests were observed by scanning electron microscopy(SEM). Therefore, all the results showed that the treated cotton fabrics with 25 wt% DPTA apparently improved the fireresistant and thermal performances.
基金National Institutes of Health and the National Center for Research Resources grant number: P20RR01645 and NIH grant # DK44510
文摘In this paper, we report an antibody functionalized microimmunopreci- pitation (IX IP) method used for enrich lowabundant post-translational modified (PT~ proteins. The device is fabricated by inert, nontoxic and disposable polydimethylsiloxane (PDMS) using a silane-based chemical modification protocol, which yield antibody- terminated PDMS surfaces. In this study, the IX IP device is specifically designed for the purification of carbonylated protein, a representative example here to illustrate the potential applications for any other PTMs, which could be immuno-tagged by specific antibodies. The test model in vitro oxidized bovine serum albumin (BSA) was first derivitized by dinitrophenylhydrazide (DNPH) and then captured by the anti-DNP immobilized on this Ix lP device. The surface functional group mapping was systematically analyzed and validated by fluorescence microscopy. Quantitative study of DNP-derivatized carbonylated protein capture recovery and elution efficiency of the device was also studied. We also envision that this proteome enrichment Ix IP device can be assembled with other lab-on-a-chip components, such as microelectrophoresis or micro-chromatographic devices for follow-up protein analysis. This selective enrichment of modified proteins greatly facilitates the study of low abundant protein biomarkers discovery.