The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized ...The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.展开更多
In order to reduce the agglomeration of nanographene and improve its dispersibility,six silane coupling agents were used to modify the surface of the nanographene particles.Visual inspection,Fourier-transform infrared...In order to reduce the agglomeration of nanographene and improve its dispersibility,six silane coupling agents were used to modify the surface of the nanographene particles.Visual inspection,Fourier-transform infrared spectroscopy,transmission electron microscopy,Raman spectroscopy,and X-ray diffraction were employed to evaluate the dispersion properties of the resulting graphene in an aqueous solution of silane coupling agents.Results show that all six types of silane coupling agents are efficient in promoting the dispersion of graphene in aqueous solutions,and no obvious sedimentation of the graphene dispersion solution is observed after a stationary storage period of 30 d.Taking 3-aminopropyltriethoxysilane(KH-550)as an example,after the graphene is dispersed in the KH-550 aqueous solution,the carboxyl group on the surface of the graphene reacts with the KH-550 amino group to form an amide bond,and KH-550 is successfully grafted onto the graphene surface.Polar functional groups ionize in water,creating an electrostatic repulsion effect,or hydrophilic functional groups form hydrogen bonds with water molecules,which is believed to improve the dispersion stability of graphene.The dispersed graphene is curled and contains many folds.Each fold has about three or four layers,with an interlayer spacing of about 0.65 nm.The dispersed graphene also has a complete lattice and a reduced number of defects.Nanographene disperses well in silane coupling agent aqueous solutions and can,therefore,be used to prepare cement-based composites.展开更多
The main cause to the deactivation of ZSM-5 catalyst, used for oxidation of benzene to phenol (BTOP) by nitrous oxide, is that the carbon deposition on the catalyst surface blocks the mouth of pores of the catalyst.In...The main cause to the deactivation of ZSM-5 catalyst, used for oxidation of benzene to phenol (BTOP) by nitrous oxide, is that the carbon deposition on the catalyst surface blocks the mouth of pores of the catalyst.In the experiments, ZSM-5 catalyst was modified by chemical surface deposition of silicon, and then the effect of modification condition on the catalyst activation was studied. The catalyst samples were characterized by XRF,EPS, XRD, TEM, N2 adsorption at low temperature, pyridine adsorption-infrared technique and etc. All the above results show that the uniform SiO2 membrane can be formed on ZSM-5 crystal surface. The SiO2 membrane covers the acid centers on ZSM-5 surface to inhibit surface coking, to avoid or decrease the possibility of ZSM-5 pore blockage so that the catalyst activity and stability can be improved efficiently. The optimum siliconiting conditions determined by the experiments are as follows: 4% load of silanizing agent, volume (ml)/mass (g) ratio of hexane/ZSM-5=15/1, and 16 h of modification time. Compared with the samples without siliconiting treatment,the samples treated under the above optimum condition can increase the productivity of phenol by 14% for 3 h reaction time and by 41% for 6 h reaction time respectively.展开更多
文摘The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data.
基金The National Key R&D Program of China(No.2018YFC0406701)the National Natural Science Foundation of China(No.51778133,51739008).
文摘In order to reduce the agglomeration of nanographene and improve its dispersibility,six silane coupling agents were used to modify the surface of the nanographene particles.Visual inspection,Fourier-transform infrared spectroscopy,transmission electron microscopy,Raman spectroscopy,and X-ray diffraction were employed to evaluate the dispersion properties of the resulting graphene in an aqueous solution of silane coupling agents.Results show that all six types of silane coupling agents are efficient in promoting the dispersion of graphene in aqueous solutions,and no obvious sedimentation of the graphene dispersion solution is observed after a stationary storage period of 30 d.Taking 3-aminopropyltriethoxysilane(KH-550)as an example,after the graphene is dispersed in the KH-550 aqueous solution,the carboxyl group on the surface of the graphene reacts with the KH-550 amino group to form an amide bond,and KH-550 is successfully grafted onto the graphene surface.Polar functional groups ionize in water,creating an electrostatic repulsion effect,or hydrophilic functional groups form hydrogen bonds with water molecules,which is believed to improve the dispersion stability of graphene.The dispersed graphene is curled and contains many folds.Each fold has about three or four layers,with an interlayer spacing of about 0.65 nm.The dispersed graphene also has a complete lattice and a reduced number of defects.Nanographene disperses well in silane coupling agent aqueous solutions and can,therefore,be used to prepare cement-based composites.
文摘The main cause to the deactivation of ZSM-5 catalyst, used for oxidation of benzene to phenol (BTOP) by nitrous oxide, is that the carbon deposition on the catalyst surface blocks the mouth of pores of the catalyst.In the experiments, ZSM-5 catalyst was modified by chemical surface deposition of silicon, and then the effect of modification condition on the catalyst activation was studied. The catalyst samples were characterized by XRF,EPS, XRD, TEM, N2 adsorption at low temperature, pyridine adsorption-infrared technique and etc. All the above results show that the uniform SiO2 membrane can be formed on ZSM-5 crystal surface. The SiO2 membrane covers the acid centers on ZSM-5 surface to inhibit surface coking, to avoid or decrease the possibility of ZSM-5 pore blockage so that the catalyst activity and stability can be improved efficiently. The optimum siliconiting conditions determined by the experiments are as follows: 4% load of silanizing agent, volume (ml)/mass (g) ratio of hexane/ZSM-5=15/1, and 16 h of modification time. Compared with the samples without siliconiting treatment,the samples treated under the above optimum condition can increase the productivity of phenol by 14% for 3 h reaction time and by 41% for 6 h reaction time respectively.