A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a ...A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2 acts as a support material to provide structural strength and prevent leakage of melted NazSO4. The microstructure and composition of the prepared composite were characterized by the N2 adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SOJSiO2 composite is a nanostructured hybrid of NazSO4 and SiO2 without new substances produced during the phase change. The macroscopic shape of the NazSO4/SiO2 composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared NazSO4/SiO2 (50%, by mass) composite are 82.3 kJ.kg i and 83.7 kJ.kg-1, and temperatures of melting and freezing are 886.0 ℃ and 880.6 ℃, respectively. Furthermore, the Na2SOJSiO2 composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.展开更多
Pervaporation membrane with preferential permeation for organiccompounds over water was prepared and characterized. Selection ofmembrane material and the effects of polydimethylsiloxane (PDMS),cross-linker, and cataly...Pervaporation membrane with preferential permeation for organiccompounds over water was prepared and characterized. Selection ofmembrane material and the effects of polydimethylsiloxane (PDMS),cross-linker, and catalyst concentrations on performances ofpervaporation membrane at room temperature were discussed. Inaddition, the time of cross-linking, and the kinds of basic plate inthe process of preparation were tested. The formulation ofpervaporation membrane material was determined.展开更多
The effect of particle size of silica, as catalyst binder, on the chemical and mechanical properties of iron based FT catalyst was studied in this work. The samples were characterized using XRD, BET, TEM, FT-IR, and H...The effect of particle size of silica, as catalyst binder, on the chemical and mechanical properties of iron based FT catalyst was studied in this work. The samples were characterized using XRD, BET, TEM, FT-IR, and H2-TPR, re- spectively. The attrition resistance and the FT activity were tested. Si-8-Si-15 catalysts prepared with 8-15 nm silica sol show good attrition resistance (attrition loss 〈 4%), especially Si-13 with an attrition loss of 1.89%. He- matite appeared in XRD patterns when silica sol above 15 nm is used. TEM micrographs show that no obvious SiO2 particles appear when silica sol particle with size less than 8 nm was used, but SiO2 particles coated with small ferrihydrite particles appear when silica sol above 8 nm was used. Si-O-Si vibration peak in FT-IR spectra increases with increasing silica sol size. Samples prepared with silica sol show good stability of FT reactions, and the average molecular weight of FT products increases with the increase of SiO2 particle.展开更多
Silica sources influence different aspects of Al-MCM-41 product. The crystallinity of nanosized Al-MCM-41 zeolites prepared crystallization and lead to change in the properties of the final from precursors mixtures co...Silica sources influence different aspects of Al-MCM-41 product. The crystallinity of nanosized Al-MCM-41 zeolites prepared crystallization and lead to change in the properties of the final from precursors mixtures containing different silica sources, e.g. tetraethylorthosilicate (TEOS), colloidal silica (CS), silicic acid (SA) and fumed silica (FS) have been studied. The produced samples are investigated using XRD, SEM, FT-IR, pyridine adsorption and N2 physisorption. XRD results show that the products obtained from different silica sources are in Al-MCM-41 phase. SEM results show that silica sources influence the produced Al-MCM-41 shape. Using silicic acid leads to formation of spherical crystals, TEOS gives cubical crystals, colloidal silica forms spherical crystals with smaller aggregated, and fumed silica gives rounded crystals. N2 physisorption results show that silica sources influence pore-diameter and pore-volume of the produced Al-MCM-41 ; the pore diameter of the produced Al-MCM-41 in case of colloidal silica, TEOS, fumed silica, and silicic acid are 12, 20, 15, and 17A respectively. Also, the pore volume of the produced AI-MCM-41 in case of colloidal silica, TEOS, fumed silica and silicic acid are 0.78, 0.71, 0.76, and 0.8 cm^3/gm, respectively.展开更多
The work describes the properties of soluble organic silicates and their applications to obtain nanocomposite materials. We analyzed the properties of the water-soluble high-modulus silicate systems and their technolo...The work describes the properties of soluble organic silicates and their applications to obtain nanocomposite materials. We analyzed the properties of the water-soluble high-modulus silicate systems and their technology for producing. The aim of this paper is the comparison properties of binders based on liquid glass containing strong organic bases silicates. We have shown how these systems are transformed from lower to higher oligomers through the formation of the silica sol and the implementation of the sol-gel process for these oligomers. We have conducted advanced research of various aspects of the use of these materials as the binder. Advantages of strong organic bases silicates in the preparation of heat resistant, nanocomposite materials are shown. Ways to obtaining quaternary ammonium silicates and their use to produce nanocomposites are proposed. Products obtained in this way can be used as a binder in the preparation of nanostruetured composite materials, water-based paints, coatings, etc. Modifiers have been proposed for making of hybrid nanostructured composite materials by a sol-gel process. There have been shown of structuring phenomena some aspects, synthesis and application of hybrid materials based on silica with grafted polymers. It has been shown, the possibility of modifying compositions using the nanostructuring agents such as tetrafurfuryloxysilane. This paper also describes methods for the synthesis of products for modifying a sol-gel process using organic soluble silicates. We are displaying their use for the production of new nanocomposite materials and coatings for protection against various external factors.展开更多
Troxerutin(TRO)is a mixture of semi-synthetic flavonoids prepared by hydroxyethylation of rutin,and it is commonly used for the treatment of cerebrovascular diseases.The main active ingredient is trishydroxyethyl ruti...Troxerutin(TRO)is a mixture of semi-synthetic flavonoids prepared by hydroxyethylation of rutin,and it is commonly used for the treatment of cerebrovascular diseases.The main active ingredient is trishydroxyethyl rutin.The mother liquor of TRO contains a lot of TRO and other derivatives of hydroxyethylated rutin.In order to make full use of the mother liquor of TRO,an efficient method was developed for recovering high-purity TRO from mother liquor of TRO by combining silica gel column chromatography with semi-preparative liquid chromatography.In the silica gel column chromatographic separation,the ratio of silica gel to sample and eluent composition were investigated to obtain optimum separation effect.The results showed that when the ratio of silica gel to sample was 50,and acetone–ethyl acetate–water–glacial acetic acid(10:10:3:1,v/v/v/v)was used as the eluent,the separation effect of TRO and adjacent impurities was good.Moreover,150 g of TRO with a purity of 80%could be obtained from 1 kg of mother liquor of TRO by the silica gel column chromatographic separation,and the results were consistent with the quality standard of TRO raw material.Subsequently,the semi-preparative HPLC was performed,and 100 g TRO with a purity of up to 98%(w/w)was obtained.Meanwhile,tetrahydroxyethylrutin and tetrahydroxyethylquercetin with purity greater than 98%were obtained.This work proposed the separation and preparation of TRO with high-purity from the production waste of TRO for the first time,which had certain environmental benefits and economic benefits.展开更多
A novel approach is designed to optimize the synthesis of sulfonic-functionalized silica material. Results from 29Si and 27AI NMR suggest that the AI acts as the bridging atom connecting the methanesulfonate and silic...A novel approach is designed to optimize the synthesis of sulfonic-functionalized silica material. Results from 29Si and 27AI NMR suggest that the AI acts as the bridging atom connecting the methanesulfonate and silica matrix. Further pyridine-FTIR spectra followed by catalytic activity tests demonstrate that compared with previous methods, our new approach results in higher Lewis acid site concentration, higher thermal stability and superior catalytic activity. Moreover, the whole catalysis preparation procedure is environmentally friendly. Specifically, the silica matrix is synthesized through hydrolysis of tetrae- thylorthosilicate employing formic acid as hydro-catalyst, in which no surfactant species or precursors were involved.展开更多
基金Supported by the National Natural Science Foundation of China(2107611)
文摘A sodium sulfate (NaeSO4)/silica (SiO2) composite was prepared as a shape-stabilized solid-liquid phase change material by a sol-gel procedure using Na2SiO3 as the silica source. Na2SO4 in the composite acts as a latent heat storage substance for solid-liquid phase change, while SiO2 acts as a support material to provide structural strength and prevent leakage of melted NazSO4. The microstructure and composition of the prepared composite were characterized by the N2 adsorption, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The results show that the prepared Na2SOJSiO2 composite is a nanostructured hybrid of NazSO4 and SiO2 without new substances produced during the phase change. The macroscopic shape of the NazSO4/SiO2 composite after the melting and freezing cycles does not change and there is no leakage of Na2SO4. Determined by differential scanning calorimeter (DSC) analysis, the values of phase change latent heat of melting and freezing of the prepared NazSO4/SiO2 (50%, by mass) composite are 82.3 kJ.kg i and 83.7 kJ.kg-1, and temperatures of melting and freezing are 886.0 ℃ and 880.6 ℃, respectively. Furthermore, the Na2SOJSiO2 composite maintains good thermal energy storage and release ability even after 100 cycles of melting and freezing. The satisfactory thermal storage performance renders this composite a versatile tool for high-temperature thermal energy storage.
文摘Pervaporation membrane with preferential permeation for organiccompounds over water was prepared and characterized. Selection ofmembrane material and the effects of polydimethylsiloxane (PDMS),cross-linker, and catalyst concentrations on performances ofpervaporation membrane at room temperature were discussed. Inaddition, the time of cross-linking, and the kinds of basic plate inthe process of preparation were tested. The formulation ofpervaporation membrane material was determined.
基金financial support from Shenhua Group and Zhejiang University of Technology is highly acknowledged for the catalyst test
文摘The effect of particle size of silica, as catalyst binder, on the chemical and mechanical properties of iron based FT catalyst was studied in this work. The samples were characterized using XRD, BET, TEM, FT-IR, and H2-TPR, re- spectively. The attrition resistance and the FT activity were tested. Si-8-Si-15 catalysts prepared with 8-15 nm silica sol show good attrition resistance (attrition loss 〈 4%), especially Si-13 with an attrition loss of 1.89%. He- matite appeared in XRD patterns when silica sol above 15 nm is used. TEM micrographs show that no obvious SiO2 particles appear when silica sol particle with size less than 8 nm was used, but SiO2 particles coated with small ferrihydrite particles appear when silica sol above 8 nm was used. Si-O-Si vibration peak in FT-IR spectra increases with increasing silica sol size. Samples prepared with silica sol show good stability of FT reactions, and the average molecular weight of FT products increases with the increase of SiO2 particle.
文摘Silica sources influence different aspects of Al-MCM-41 product. The crystallinity of nanosized Al-MCM-41 zeolites prepared crystallization and lead to change in the properties of the final from precursors mixtures containing different silica sources, e.g. tetraethylorthosilicate (TEOS), colloidal silica (CS), silicic acid (SA) and fumed silica (FS) have been studied. The produced samples are investigated using XRD, SEM, FT-IR, pyridine adsorption and N2 physisorption. XRD results show that the products obtained from different silica sources are in Al-MCM-41 phase. SEM results show that silica sources influence the produced Al-MCM-41 shape. Using silicic acid leads to formation of spherical crystals, TEOS gives cubical crystals, colloidal silica forms spherical crystals with smaller aggregated, and fumed silica gives rounded crystals. N2 physisorption results show that silica sources influence pore-diameter and pore-volume of the produced Al-MCM-41 ; the pore diameter of the produced Al-MCM-41 in case of colloidal silica, TEOS, fumed silica, and silicic acid are 12, 20, 15, and 17A respectively. Also, the pore volume of the produced AI-MCM-41 in case of colloidal silica, TEOS, fumed silica and silicic acid are 0.78, 0.71, 0.76, and 0.8 cm^3/gm, respectively.
文摘The work describes the properties of soluble organic silicates and their applications to obtain nanocomposite materials. We analyzed the properties of the water-soluble high-modulus silicate systems and their technology for producing. The aim of this paper is the comparison properties of binders based on liquid glass containing strong organic bases silicates. We have shown how these systems are transformed from lower to higher oligomers through the formation of the silica sol and the implementation of the sol-gel process for these oligomers. We have conducted advanced research of various aspects of the use of these materials as the binder. Advantages of strong organic bases silicates in the preparation of heat resistant, nanocomposite materials are shown. Ways to obtaining quaternary ammonium silicates and their use to produce nanocomposites are proposed. Products obtained in this way can be used as a binder in the preparation of nanostruetured composite materials, water-based paints, coatings, etc. Modifiers have been proposed for making of hybrid nanostructured composite materials by a sol-gel process. There have been shown of structuring phenomena some aspects, synthesis and application of hybrid materials based on silica with grafted polymers. It has been shown, the possibility of modifying compositions using the nanostructuring agents such as tetrafurfuryloxysilane. This paper also describes methods for the synthesis of products for modifying a sol-gel process using organic soluble silicates. We are displaying their use for the production of new nanocomposite materials and coatings for protection against various external factors.
基金Shaanxi science and technology hall project(Grant No.2018JM7060)Provincial Key Discipline Construction Project of pharmacy of Xi’an Medical University(Grant No.2016YXXK08)。
文摘Troxerutin(TRO)is a mixture of semi-synthetic flavonoids prepared by hydroxyethylation of rutin,and it is commonly used for the treatment of cerebrovascular diseases.The main active ingredient is trishydroxyethyl rutin.The mother liquor of TRO contains a lot of TRO and other derivatives of hydroxyethylated rutin.In order to make full use of the mother liquor of TRO,an efficient method was developed for recovering high-purity TRO from mother liquor of TRO by combining silica gel column chromatography with semi-preparative liquid chromatography.In the silica gel column chromatographic separation,the ratio of silica gel to sample and eluent composition were investigated to obtain optimum separation effect.The results showed that when the ratio of silica gel to sample was 50,and acetone–ethyl acetate–water–glacial acetic acid(10:10:3:1,v/v/v/v)was used as the eluent,the separation effect of TRO and adjacent impurities was good.Moreover,150 g of TRO with a purity of 80%could be obtained from 1 kg of mother liquor of TRO by the silica gel column chromatographic separation,and the results were consistent with the quality standard of TRO raw material.Subsequently,the semi-preparative HPLC was performed,and 100 g TRO with a purity of up to 98%(w/w)was obtained.Meanwhile,tetrahydroxyethylrutin and tetrahydroxyethylquercetin with purity greater than 98%were obtained.This work proposed the separation and preparation of TRO with high-purity from the production waste of TRO for the first time,which had certain environmental benefits and economic benefits.
文摘A novel approach is designed to optimize the synthesis of sulfonic-functionalized silica material. Results from 29Si and 27AI NMR suggest that the AI acts as the bridging atom connecting the methanesulfonate and silica matrix. Further pyridine-FTIR spectra followed by catalytic activity tests demonstrate that compared with previous methods, our new approach results in higher Lewis acid site concentration, higher thermal stability and superior catalytic activity. Moreover, the whole catalysis preparation procedure is environmentally friendly. Specifically, the silica matrix is synthesized through hydrolysis of tetrae- thylorthosilicate employing formic acid as hydro-catalyst, in which no surfactant species or precursors were involved.