The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Galli...The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.展开更多
SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorpti...SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.展开更多
Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate, surface morpholog...Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate, surface morphology, and chemical composition were measured by spectroscopic ellipsometry(SE), atomic force mieroscope(AFM) and x-ray photoelectron spectroscopy(XPS). It was shown that amorphous silicon nitride film could be prepared by LF-PECVD with good uniformity and even surface. The XPS result indicated that a small quantity of oxygen was involved in the sample, which was discussed in this paper.展开更多
A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The sol...A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The solution with ratio of H2O/TEOS15, R4N+ and glycerol as templates, combining with the hydrolyzed intermediate, controlled the silica aggregating; the templated silica film with heterostructure was developed into homogeneous nano-porous then meso-porous silica films after being annealed from 750 C to 850 C; the formation mechanism of the porous silica films was discussed; morphologies of the silica films were characterized. The refractive indexes of the porous silica films were 1.2561.458, the thermal conductivity < 0.7 W/m/K. The fabricating procedure and the sequence had not been reported before.展开更多
Stress controllable silicon nitride(Si Nx) films deposited by plasma enhanced chemical vapor deposition(PECVD) are reported. Low stress Si Nx films were deposited in both high frequency(HF) mode and dual frequency(HF/...Stress controllable silicon nitride(Si Nx) films deposited by plasma enhanced chemical vapor deposition(PECVD) are reported. Low stress Si Nx films were deposited in both high frequency(HF) mode and dual frequency(HF/LF) mode. By optimizing process parameters, stress free(-0.27 MPa) Si Nx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited Si Nx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit(IC), micro-electro-mechanical systems(MEMS) and bio-MEMS.展开更多
文摘The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.
基金This work was supported by the National Natural Science Foundation of China (No.50172044).
文摘SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.
文摘Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate, surface morphology, and chemical composition were measured by spectroscopic ellipsometry(SE), atomic force mieroscope(AFM) and x-ray photoelectron spectroscopy(XPS). It was shown that amorphous silicon nitride film could be prepared by LF-PECVD with good uniformity and even surface. The XPS result indicated that a small quantity of oxygen was involved in the sample, which was discussed in this paper.
文摘A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The solution with ratio of H2O/TEOS15, R4N+ and glycerol as templates, combining with the hydrolyzed intermediate, controlled the silica aggregating; the templated silica film with heterostructure was developed into homogeneous nano-porous then meso-porous silica films after being annealed from 750 C to 850 C; the formation mechanism of the porous silica films was discussed; morphologies of the silica films were characterized. The refractive indexes of the porous silica films were 1.2561.458, the thermal conductivity < 0.7 W/m/K. The fabricating procedure and the sequence had not been reported before.
基金supported by the National High Technology Research and Development Program of China(No.2015AA042603)the Fundamental Research Funds for the Central Universities of China(No.106112014CDJZR160001)
文摘Stress controllable silicon nitride(Si Nx) films deposited by plasma enhanced chemical vapor deposition(PECVD) are reported. Low stress Si Nx films were deposited in both high frequency(HF) mode and dual frequency(HF/LF) mode. By optimizing process parameters, stress free(-0.27 MPa) Si Nx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited Si Nx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit(IC), micro-electro-mechanical systems(MEMS) and bio-MEMS.