从基于DDSOG(Deep Dry Silicon on Glass)工艺的硅微谐振式加速度计样机入手,阐述了加速度计中微杠杆结构对惯性力的放大作用,证明了标度因数与系统放大倍数n为正比关系,并以加速度计样机中的单级微杠杆为例,建立了加速度计的理论模型...从基于DDSOG(Deep Dry Silicon on Glass)工艺的硅微谐振式加速度计样机入手,阐述了加速度计中微杠杆结构对惯性力的放大作用,证明了标度因数与系统放大倍数n为正比关系,并以加速度计样机中的单级微杠杆为例,建立了加速度计的理论模型。推导了微杠杆的放大倍数A和轴向刚度K的计算公式,以此为基础导出了加速度计系统放大倍数n的计算方法。依据公式计算得到加速度计样机的系统放大倍数n的理论值为21.820,并用有限元方法对理论值进行了仿真验算,得出n的仿真值为19。最后对加速度样机进行了实际测试,测得加速度计的标度因数为127.33Hz/g,系统放大倍数n为25.466。对所得结果的比较表明,系统放大倍数的理论值与仿真值及实验值的误差分别为14.8%和14.3%,误差在可接受范围内。展开更多
以自主研制的硅微谐振式加速度计(MSRA)为研究对象,针对其驱动电路的带宽测试,设计一种基于锁相环解调电路的带宽测试方案。针对锁相环驱动电路的相位传递函数建立SIMULINK仿真模型,并对闭环回路模型进行分析。在锁相环的输入端口加载...以自主研制的硅微谐振式加速度计(MSRA)为研究对象,针对其驱动电路的带宽测试,设计一种基于锁相环解调电路的带宽测试方案。针对锁相环驱动电路的相位传递函数建立SIMULINK仿真模型,并对闭环回路模型进行分析。在锁相环的输入端口加载由现场可编程门阵列(FPGA)产生的激励信号,等效为外界加速度频率变化下的锁相环输入信号,由基于锁相环的解调电路读出加速度计驱动电路的输出幅值,该带宽测试模型与MSRA实际测试情况一致。实验结果表明:MSRA锁相环驱动电路的实测+3 d B的带宽值为210 Hz,与模型仿真得到的216 Hz基本吻合。该测试方法具有精度高、易实施、成本低等特点,可满足锁相环驱动电路的带宽测试需求。展开更多
文摘从基于DDSOG(Deep Dry Silicon on Glass)工艺的硅微谐振式加速度计样机入手,阐述了加速度计中微杠杆结构对惯性力的放大作用,证明了标度因数与系统放大倍数n为正比关系,并以加速度计样机中的单级微杠杆为例,建立了加速度计的理论模型。推导了微杠杆的放大倍数A和轴向刚度K的计算公式,以此为基础导出了加速度计系统放大倍数n的计算方法。依据公式计算得到加速度计样机的系统放大倍数n的理论值为21.820,并用有限元方法对理论值进行了仿真验算,得出n的仿真值为19。最后对加速度样机进行了实际测试,测得加速度计的标度因数为127.33Hz/g,系统放大倍数n为25.466。对所得结果的比较表明,系统放大倍数的理论值与仿真值及实验值的误差分别为14.8%和14.3%,误差在可接受范围内。
文摘以自主研制的硅微谐振式加速度计(MSRA)为研究对象,针对其驱动电路的带宽测试,设计一种基于锁相环解调电路的带宽测试方案。针对锁相环驱动电路的相位传递函数建立SIMULINK仿真模型,并对闭环回路模型进行分析。在锁相环的输入端口加载由现场可编程门阵列(FPGA)产生的激励信号,等效为外界加速度频率变化下的锁相环输入信号,由基于锁相环的解调电路读出加速度计驱动电路的输出幅值,该带宽测试模型与MSRA实际测试情况一致。实验结果表明:MSRA锁相环驱动电路的实测+3 d B的带宽值为210 Hz,与模型仿真得到的216 Hz基本吻合。该测试方法具有精度高、易实施、成本低等特点,可满足锁相环驱动电路的带宽测试需求。