A novel low-cost sub-50nm poly-Si gate patterning technology is proposed and experimentally demonstrated.The technology is resolution-independent,ie.,it does not contain any critical photolithographic steps.The nano-s...A novel low-cost sub-50nm poly-Si gate patterning technology is proposed and experimentally demonstrated.The technology is resolution-independent,ie.,it does not contain any critical photolithographic steps.The nano-scale masking pattern for gate formation is formed according to the image transfer of an edge-defined spacer.Experimental results reveal that the resultant gate length,about 75 to 85 percent of the thickness,is determined by the thickness of the film to form the spacer.From SEM photograph,the cross-section of the poly-Si gate is seen to be an inverted-trapezoid,which is useful to reduce the gate resistance.展开更多
The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted...The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.展开更多
As a further theoretical study of the collision-induced quantum interference on rotational energy transfer in an atom-diatom system, based on the first-Born approximation of time-dependent perturbation theory, taking ...As a further theoretical study of the collision-induced quantum interference on rotational energy transfer in an atom-diatom system, based on the first-Born approximation of time-dependent perturbation theory, taking into account the anisotropic Lennard-Jones interaction potential and the long-range interaction potential, the differential interference angles in singlet-triplet mixed states of CO A^1Π(v=9)-e3∑-(v=1) system in collision with He, Ne, Ar, and other partners were calculated theoretically. The relationships of differential interference angle versus impact parameters, including collision parameter b and velocity, are obtained.展开更多
The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (i...The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (integral inelastic cross-sections) is obtained by the IOSAM (infinite order sudden approximation method) and predicted by PG (power-gap) law in the variation of cross-sections. The investigation provided that the classical limit of angular momentum transfer is given by hard ellipsoid potential is meaningful even the cross-sections computed on the real potential, provided the classical turning point on the surface of soft potential is assumed as hard potential surface.展开更多
Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficie...Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficient and effective intra-particle diffusivity) for toluene and p-dichlorobenzene on silica gel adsorbent in the subcritical and supercritical CO2. An apparatus based on supercritical fluid chromatography was established and the experiments were performed at temperatures of 298.15-318.15 K and pressures of 7.5-17.8 MPa. The two methods have been compared. The results show that for the systems studied here the moment method can give reasonable values for both adsorption equilibrium constant and mass transfer properties, but the time-domain analysis only can obtain the adsorption equilibrium constant. The dependence of adsorption equilibrium constant and mass transfer properties on temperature and pressure was investigated.展开更多
A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step am...A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.展开更多
The poly (N-isopropylacrylamide) brush was covalently bonded on an initiator-coated silicon wafer via surface-initiated atom transfer radical polymerization. The polymer brush was (76.2±0.1) nm in thickness (by e...The poly (N-isopropylacrylamide) brush was covalently bonded on an initiator-coated silicon wafer via surface-initiated atom transfer radical polymerization. The polymer brush was (76.2±0.1) nm in thickness (by ellipsometer) with a grafting density of ca. 0.27 chains/nm 2 . The tribological properties of the poly (N-isopropylacrylamide) brush were investigated by means of ball-on-disk tests in a rotational mode under water lubrication for tribological application. The experimental results exhibited a low friction coefficient of ca. 0.03. The excellent lubrication property of the brush was due to its amide groups in the polymer chains. It was supposed that the good lubrication property of the brush was attributed to the cross-linked polymer network formed by the hydrogen bond association of N-H…O==C and the water molecular layer adsorbed by the terminal amide groups in the brush. The poly (N-isopropylacrylamide) solution also exhibits a lubrication property due to physical adsorption of the polymer chains.展开更多
Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicato...Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicator, which can detect and quantify a broader biogenic pH range with superior sensitivity compared to pre-established trafficking agents employing one-dimensional turn-on of the fluorescence resonance-energy-transfer (FRET) signal. We fabricated polyaniline- based nanoprobes, which exhibited convertible transition states according to the proton levels, as an in situ indicator of vesicular transport pH. Silica-coated Fe304-MnO heterometal nanoparticles were synthesised and utilised as a metal oxidant to polymerise the aniline monomer. Finally, silica-coated polyaniline nanoparticles with adsorbed cyanine dye fluorophores Cy3 and Cy7 (FPSNIcyB and FPSNIcy7) were fabricated as proton-sensitive nanoindicators. Owing to the selective quenching induced by the local pH variations of vesicular transport, FPSNIcy3 and FPSNIcy7 demonstrated excellent intracellular trafficking and provided sensitive optical indication of minute proton levels.展开更多
文摘A novel low-cost sub-50nm poly-Si gate patterning technology is proposed and experimentally demonstrated.The technology is resolution-independent,ie.,it does not contain any critical photolithographic steps.The nano-scale masking pattern for gate formation is formed according to the image transfer of an edge-defined spacer.Experimental results reveal that the resultant gate length,about 75 to 85 percent of the thickness,is determined by the thickness of the film to form the spacer.From SEM photograph,the cross-section of the poly-Si gate is seen to be an inverted-trapezoid,which is useful to reduce the gate resistance.
基金Jiangsu Province Project of Postgraduate Innovation Engineering,China(No.CXZZ12_0821)Industry-academic Joint Technological Innovations Fund Project of Jiangsu Province,China(No.BY2012120)Suzhou Project of Scientific and Technical Supporting,China(No.ZXS2012001)
文摘The novel reactive transfer printing of silk was carried out through a hot-press adhesion and steaming. The special transfer paper was prepared by coating the paste mainly containing hot-melt adhesive hlgh-substituted hydroxypropyl cellulose (H-HPC) and printing thickener earboxymethyl cellulose (CMC). The effects of each ingredient in the paste on color yield of the prints and dye penetration were investigated. The major results indicate that, color yield is chiefly governed by the adhesion extent imparted by H-HPC, the type of fixing alkaline agent, and the content of urea. Trichloroacetic acid (TCAA) as the fixing alkaline agent and adding 5% urea can enhance the color depth obviously. Dye penetration depends on the coating quantity on the transfer paper, the contents of urea and dicyandiamide. The printed silk possesses a higher color yield, color fastness of grade 3 or above, clear sharpness, and good handle when the paste contains 3 % H-HPC, 0. 7 % CMC, 3 % TCAA, 5 % urea, 3 % dicyandiamide, and 0. 5 % physical sorbent nano-silica.
基金This work was supported by the National Natural Science Foundation of China (No.10374040) and the Educational Department of Liaoning Province (No.20060347).
文摘As a further theoretical study of the collision-induced quantum interference on rotational energy transfer in an atom-diatom system, based on the first-Born approximation of time-dependent perturbation theory, taking into account the anisotropic Lennard-Jones interaction potential and the long-range interaction potential, the differential interference angles in singlet-triplet mixed states of CO A^1Π(v=9)-e3∑-(v=1) system in collision with He, Ne, Ar, and other partners were calculated theoretically. The relationships of differential interference angle versus impact parameters, including collision parameter b and velocity, are obtained.
文摘The limit of rotational energy transfer in atom-diatomic systems due to inelastic collision was investigated over the wide range of collision energy, reduced mass and potential parameters of F2-He system. The IICS (integral inelastic cross-sections) is obtained by the IOSAM (infinite order sudden approximation method) and predicted by PG (power-gap) law in the variation of cross-sections. The investigation provided that the classical limit of angular momentum transfer is given by hard ellipsoid potential is meaningful even the cross-sections computed on the real potential, provided the classical turning point on the surface of soft potential is assumed as hard potential surface.
基金Supported by research grant 02KJB530002 from Jiangsu Provincial Committee of Education.
文摘Based on chromatographic theory, the moment method and the time-domain fitting analysis were applied to measure and evaluate the adsorption equilibrium constant and mass transfer properties (axial dispersion coefficient and effective intra-particle diffusivity) for toluene and p-dichlorobenzene on silica gel adsorbent in the subcritical and supercritical CO2. An apparatus based on supercritical fluid chromatography was established and the experiments were performed at temperatures of 298.15-318.15 K and pressures of 7.5-17.8 MPa. The two methods have been compared. The results show that for the systems studied here the moment method can give reasonable values for both adsorption equilibrium constant and mass transfer properties, but the time-domain analysis only can obtain the adsorption equilibrium constant. The dependence of adsorption equilibrium constant and mass transfer properties on temperature and pressure was investigated.
基金Supported by the National Natural Science Foundation of China(21306143)the Educational Commission of Hubei Province of China(D20161503)the Hubei Province Phosphorus Resource and Ethylene Project Downstream Exploitation Collaborative Innovation Center
文摘A new effective process to improve the utilization of industrial fluorosilicic acid of phosphate fertilizer by-product has been investigated to comprehensive application of the silicon and fluorine source. Two-step ammoniation was applied to recover high-quality silica. The recovered silica can be used to hydrothermal synthesize ZSM-5 zeolite without impurity phase contamination, which was confirmed by XRD, TG, SEM, BET and EDS characteristic techniques. It was found that with the increase of SiO_2/Al_2O_3 ratio and the extension of reaction time, the crystal type transform from the orthorhombic to the monoclinic phase. The impurity fluorine content of the recovered SiO_2 from H_2SiF_6 has great influence on the hydrothermal process for ZSM-5 crystal structure formation.Moreover, the increase of fluorine ions content in the hydrothermal process can control the crystal morphology and size of synthesized ZSM-5. Catalytic properties of synthesized HZSM-5 with different SiO_2/Al_2O_3 ratio in transalkylation of toluene and 1,2,4-trimethylbenzene show good and stable catalytic performance. The ZSM-5 synthesized with recovered silica source exhibits similar catalyst life as the performance of small particle size HZSM-5, because the ZSM-5 synthesized with the silica source from industrial hexafluorosilicic acid prefers a thin disk crystal along the b axis direction, which shortens the diffusion distance of generated products.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50805086 and 50730007)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51021064)
文摘The poly (N-isopropylacrylamide) brush was covalently bonded on an initiator-coated silicon wafer via surface-initiated atom transfer radical polymerization. The polymer brush was (76.2±0.1) nm in thickness (by ellipsometer) with a grafting density of ca. 0.27 chains/nm 2 . The tribological properties of the poly (N-isopropylacrylamide) brush were investigated by means of ball-on-disk tests in a rotational mode under water lubrication for tribological application. The experimental results exhibited a low friction coefficient of ca. 0.03. The excellent lubrication property of the brush was due to its amide groups in the polymer chains. It was supposed that the good lubrication property of the brush was attributed to the cross-linked polymer network formed by the hydrogen bond association of N-H…O==C and the water molecular layer adsorbed by the terminal amide groups in the brush. The poly (N-isopropylacrylamide) solution also exhibits a lubrication property due to physical adsorption of the polymer chains.
文摘Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicator, which can detect and quantify a broader biogenic pH range with superior sensitivity compared to pre-established trafficking agents employing one-dimensional turn-on of the fluorescence resonance-energy-transfer (FRET) signal. We fabricated polyaniline- based nanoprobes, which exhibited convertible transition states according to the proton levels, as an in situ indicator of vesicular transport pH. Silica-coated Fe304-MnO heterometal nanoparticles were synthesised and utilised as a metal oxidant to polymerise the aniline monomer. Finally, silica-coated polyaniline nanoparticles with adsorbed cyanine dye fluorophores Cy3 and Cy7 (FPSNIcyB and FPSNIcy7) were fabricated as proton-sensitive nanoindicators. Owing to the selective quenching induced by the local pH variations of vesicular transport, FPSNIcy3 and FPSNIcy7 demonstrated excellent intracellular trafficking and provided sensitive optical indication of minute proton levels.