The solution of H 2O 2 is proposed to post-treat thick porous silicon (PS) films.The prepared PS film as the cathode is applied about 10mA/cm 2 current in mixture of ethanol,HF,and H 2O 2 solutions,which is expec...The solution of H 2O 2 is proposed to post-treat thick porous silicon (PS) films.The prepared PS film as the cathode is applied about 10mA/cm 2 current in mixture of ethanol,HF,and H 2O 2 solutions,which is expected to improve the stability and the smoothness of the surface and the mechanical property of the thick porous silicon films.The microstructure of the PS thick films with thicknesse of 20μm and 70μm has been studied.The SEM images show significant improved smoothness on surface of PS films,and XRD spectra suggest the formation of oxide layer after post-treating in H 2O 2.展开更多
The interaction between S2 molecule and SiHx (x=1, 2, 3) in porous silicon is investigated using the B3LYP method of density functional theory with the lanl2dz basis set. The model of porous silicon doped with CH3, ...The interaction between S2 molecule and SiHx (x=1, 2, 3) in porous silicon is investigated using the B3LYP method of density functional theory with the lanl2dz basis set. The model of porous silicon doped with CH3, Si-O-Si and OH species is built. By analyzing the binding energy and electronic transfer, we conclude that the interaction of S2 molecule with SiHx (x=1, 2, 3) is much stronger than the interaction of S2 molecule with CH3 and OH, as S2 molecule is located in different sites of the model. Using the transition state theory, we study the Si2H6+S2→H3SiH2SiS+HS reaction, and the reaction energy barrier is 50.2 kJ/mol, which indicates that the reaction is easy to occur.展开更多
The synthesis of mesoporous material SBA-15 has been extensively reported in the past decades, which possesses a pore diameter of 6-8 nm on average. Here, a simple post-synthesis procedure has been developed to synthe...The synthesis of mesoporous material SBA-15 has been extensively reported in the past decades, which possesses a pore diameter of 6-8 nm on average. Here, a simple post-synthesis procedure has been developed to synthesize SBA-15 with further expanded pore diameter to above 10 nm simply by a solvothermal treatment replacing traditional hydrothermal step for mesopore template removal, which results in efficient pore expansion and the significantly promoted condensation of silica framework as well. This facile approach is believed applicable for pore expansions of other kinds of mesoporous silica materials.展开更多
We present a novel electrochemical technique for the fabrication of nano-photonic crystal structures. Based on a specially designed electrolyte, porous silicon(PSi) layers with different porosities are possible to be ...We present a novel electrochemical technique for the fabrication of nano-photonic crystal structures. Based on a specially designed electrolyte, porous silicon(PSi) layers with different porosities are possible to be produced on highly-doped n-type silicon substrate by varying the applied current density which determines the size and the morphology of pores. By applying an alternative current density modulation during anodization, porous silicon photonic crystals are obtained using HF-containing electrolyte without oxidizing components. The current burst model(CBM) is employed to interpret the mechanism of the formation of the macropore porous silicon.展开更多
文摘The solution of H 2O 2 is proposed to post-treat thick porous silicon (PS) films.The prepared PS film as the cathode is applied about 10mA/cm 2 current in mixture of ethanol,HF,and H 2O 2 solutions,which is expected to improve the stability and the smoothness of the surface and the mechanical property of the thick porous silicon films.The microstructure of the PS thick films with thicknesse of 20μm and 70μm has been studied.The SEM images show significant improved smoothness on surface of PS films,and XRD spectra suggest the formation of oxide layer after post-treating in H 2O 2.
文摘The interaction between S2 molecule and SiHx (x=1, 2, 3) in porous silicon is investigated using the B3LYP method of density functional theory with the lanl2dz basis set. The model of porous silicon doped with CH3, Si-O-Si and OH species is built. By analyzing the binding energy and electronic transfer, we conclude that the interaction of S2 molecule with SiHx (x=1, 2, 3) is much stronger than the interaction of S2 molecule with CH3 and OH, as S2 molecule is located in different sites of the model. Using the transition state theory, we study the Si2H6+S2→H3SiH2SiS+HS reaction, and the reaction energy barrier is 50.2 kJ/mol, which indicates that the reaction is easy to occur.
基金supported by the National Basic Research Program of China(2012CB933602)the National Natural Science Foundation of China(51172070,51132009,51202068 and51472085)+1 种基金Shu Guang Project(11SG30)the Fundamental Research Funds for the Central Universities
文摘The synthesis of mesoporous material SBA-15 has been extensively reported in the past decades, which possesses a pore diameter of 6-8 nm on average. Here, a simple post-synthesis procedure has been developed to synthesize SBA-15 with further expanded pore diameter to above 10 nm simply by a solvothermal treatment replacing traditional hydrothermal step for mesopore template removal, which results in efficient pore expansion and the significantly promoted condensation of silica framework as well. This facile approach is believed applicable for pore expansions of other kinds of mesoporous silica materials.
基金supported by the National Natural Science Foundation of China(No.61265009)the Excellent Youth Foundation of Shihezi University(No.2012ZRKXYQ-YD20)the Doctoral Research Foundation of Shihezi University(No.RCZX201327)
文摘We present a novel electrochemical technique for the fabrication of nano-photonic crystal structures. Based on a specially designed electrolyte, porous silicon(PSi) layers with different porosities are possible to be produced on highly-doped n-type silicon substrate by varying the applied current density which determines the size and the morphology of pores. By applying an alternative current density modulation during anodization, porous silicon photonic crystals are obtained using HF-containing electrolyte without oxidizing components. The current burst model(CBM) is employed to interpret the mechanism of the formation of the macropore porous silicon.