Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent,...Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent, volume ratio of water phase to organic phase, pH value of aqueous phase and reaction temperature on the initial reaction rate, maximum yield and enantiomeric excess (ee) of the product were systematically explored. All the above-mentioned factors had significant influence on the reaction. n-Hexane was found to be the best organic solvent for the reaction. The optimum shake speed, volume ratio of water phase to organic phase, pH value and reaction temperature were 150 r.min-1, 1/2, 8 and 30 ℃ respectively, under which the maximum yield and enantiomeric excess of the product were as high as 96.8% and 95.7%, which are 15% and 16% higher than those of the corresponding reaction performed in aqueous phase. To our best knowledge, this is the most satisfactory result obtained.展开更多
Highly efficient asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed with (R)-oxynitrilase from defatted Prunus Japonica seed meal for the prep...Highly efficient asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed with (R)-oxynitrilase from defatted Prunus Japonica seed meal for the preparation of optically active (R)-2-trimethylsilyl-2-hydroxyl-propionitrile was successfully carried out for the first time. For better understanding of the reaction, various influential variables were examined with respect to the initial reaction rate, the substrate conversion and the product enantiomeric excess (e.e.). Diisopropyl ether was found to be the best organic phase for this reaction among all the organic solvents tested. The optimal concentrations of Prunus Japonica seed meal powder, acetyltrimethylsilane and acetone cyanohydrin, volume ratio of aqueous phase to organic phase, buffer pH value and the reaction temperature were 34.5g·L^-1 and 14mmol· L^-1, 28mmol· L^-1, 13% (by volume), 5.0 and 30℃, respectively, while the initial reaction rate, the substrate conversion and the product enantiomeric excess were 1.34 mmol·L^-1·h^-1, 99.0% and 99.0%, respectively. The comparative study demonstrated that silicon atom in substrate showed great effect on the reaction and acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus Japonica seed than its carbon analogue 3,3-dimethyl-2-butanone.展开更多
The production of Ph3Sn–O–SBA-15(Ph3Sn SBA)was achieved by heating triphenyltin chloride and SBA-15in N-methylpyrrolidone at 190°C for 5 h using triethylamine as a catalyst.The composition,structure,and surface...The production of Ph3Sn–O–SBA-15(Ph3Sn SBA)was achieved by heating triphenyltin chloride and SBA-15in N-methylpyrrolidone at 190°C for 5 h using triethylamine as a catalyst.The composition,structure,and surface physical and chemical properties of Ph3Sn SBA were characterized using inductively coupled plasma-atomic emission spectroscopy(ICP-AES),13C,119Sn and29Si solid-state nuclear magnetic resonance(NMR)spectroscopy in situ pyridine infrared spectroscopy(Py-IR),N2adsorption–desorption isotherms,X-ray diffraction(XRD)and transmission electron microscopy(TEM).The results of ICP-AES and organic elemental analysis showed that the grafting yield of Sn was 17%(by mass)for Ph3Sn SBA.The elemental analysis and solid-state NMR results for Ph3Sn SBA were consistent with grafting of triphenyltin on SBA-15.The N2adsorption–desorption,XRD and TEM analyses showed that Ph3Sn SBA retained an ordered hexagonal mesoporous structure,resulting in decreases in the surface area,pore size and mesopore volume,and an increase in acidity as compared with SBA-15.The Hammett acidity function(H0)value and the number of acid sites for Ph3Sn SBA,obtained by the Hammett methods,were 2.77–3.30 and 2.07 mmol·g-1,respectively.The Friedel–Crafts acylation of toluene and acetic anhydride over Ph3Sn SBA was investigated.The yield of methylacetophenone(MAP)and the selectivity for 4-methylacetophenone(PMAP)were 79.56%and 97.12%,respectively,when the conditions were n(toluene):n(anhydride)=2.0:1.0 with 6%(by mass)catalyst,and heating under reflux for 5 h.The PMAP selectivity still reached 93.11%when Ph3Sn SBA was used for the fifth time under the same reaction conditions.展开更多
基金Supported by the National Natural Science Foundation of China(No.20076019)the Natural Science Foundation of Guang-dong Province(No.000444).
文摘Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent, volume ratio of water phase to organic phase, pH value of aqueous phase and reaction temperature on the initial reaction rate, maximum yield and enantiomeric excess (ee) of the product were systematically explored. All the above-mentioned factors had significant influence on the reaction. n-Hexane was found to be the best organic solvent for the reaction. The optimum shake speed, volume ratio of water phase to organic phase, pH value and reaction temperature were 150 r.min-1, 1/2, 8 and 30 ℃ respectively, under which the maximum yield and enantiomeric excess of the product were as high as 96.8% and 95.7%, which are 15% and 16% higher than those of the corresponding reaction performed in aqueous phase. To our best knowledge, this is the most satisfactory result obtained.
文摘Highly efficient asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed with (R)-oxynitrilase from defatted Prunus Japonica seed meal for the preparation of optically active (R)-2-trimethylsilyl-2-hydroxyl-propionitrile was successfully carried out for the first time. For better understanding of the reaction, various influential variables were examined with respect to the initial reaction rate, the substrate conversion and the product enantiomeric excess (e.e.). Diisopropyl ether was found to be the best organic phase for this reaction among all the organic solvents tested. The optimal concentrations of Prunus Japonica seed meal powder, acetyltrimethylsilane and acetone cyanohydrin, volume ratio of aqueous phase to organic phase, buffer pH value and the reaction temperature were 34.5g·L^-1 and 14mmol· L^-1, 28mmol· L^-1, 13% (by volume), 5.0 and 30℃, respectively, while the initial reaction rate, the substrate conversion and the product enantiomeric excess were 1.34 mmol·L^-1·h^-1, 99.0% and 99.0%, respectively. The comparative study demonstrated that silicon atom in substrate showed great effect on the reaction and acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus Japonica seed than its carbon analogue 3,3-dimethyl-2-butanone.
基金Supported by the National Science Foundation of Heilongjiang Province(B201010)the Education Department of Heilongjiang Province(12511595)
文摘The production of Ph3Sn–O–SBA-15(Ph3Sn SBA)was achieved by heating triphenyltin chloride and SBA-15in N-methylpyrrolidone at 190°C for 5 h using triethylamine as a catalyst.The composition,structure,and surface physical and chemical properties of Ph3Sn SBA were characterized using inductively coupled plasma-atomic emission spectroscopy(ICP-AES),13C,119Sn and29Si solid-state nuclear magnetic resonance(NMR)spectroscopy in situ pyridine infrared spectroscopy(Py-IR),N2adsorption–desorption isotherms,X-ray diffraction(XRD)and transmission electron microscopy(TEM).The results of ICP-AES and organic elemental analysis showed that the grafting yield of Sn was 17%(by mass)for Ph3Sn SBA.The elemental analysis and solid-state NMR results for Ph3Sn SBA were consistent with grafting of triphenyltin on SBA-15.The N2adsorption–desorption,XRD and TEM analyses showed that Ph3Sn SBA retained an ordered hexagonal mesoporous structure,resulting in decreases in the surface area,pore size and mesopore volume,and an increase in acidity as compared with SBA-15.The Hammett acidity function(H0)value and the number of acid sites for Ph3Sn SBA,obtained by the Hammett methods,were 2.77–3.30 and 2.07 mmol·g-1,respectively.The Friedel–Crafts acylation of toluene and acetic anhydride over Ph3Sn SBA was investigated.The yield of methylacetophenone(MAP)and the selectivity for 4-methylacetophenone(PMAP)were 79.56%and 97.12%,respectively,when the conditions were n(toluene):n(anhydride)=2.0:1.0 with 6%(by mass)catalyst,and heating under reflux for 5 h.The PMAP selectivity still reached 93.11%when Ph3Sn SBA was used for the fifth time under the same reaction conditions.