Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited m...Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited much higher activity than traditional ZSM-5 zeolite under the same condition. It is worth mentioning that the polymer product selectivity of aluminosilicate was much lower than that of ZSM-5, which might be useful for implementing the catalytic cracking process. The unique structure of macroporous aluminosilicate with interconnected-macropores and continuous skeletons was believed to be responsible for its excellent catalytic activity and low polymer product selectivity. Detailed discussion on the reaction pathway was also conducted.展开更多
The little stiffness modulus, high voidage and long curing time has limited the use of CBEM's (cold bituminous emulsion mixtures) in road and highways to pavement experiencing low traffic. The aim of this study is ...The little stiffness modulus, high voidage and long curing time has limited the use of CBEM's (cold bituminous emulsion mixtures) in road and highways to pavement experiencing low traffic. The aim of this study is to improve the properties of gap graded CRA (cold rolled asphal0 containing OPC (ordinary portland cement) as filler by addition of a by-product material as an activator. OPC was added to the CRA as a replacement to the conventional mineral filler (0%-100%), while LJMUA (Liverpool John Moores University Activator) was added as an additive in the range from 0%-3% by total mass of aggregate. Laboratory tests included stiffness modulus and uniaxial creep test to assess the mechanical properties. The results have shown a considerable improvement in the mechanical properties from the addition of LJMUA to the CRA containing OPC especially for the early life stiffness modulus that is the main disadvantage of the cold mixtures.展开更多
基金Financial supports from the National Natural Science Foundation of China(No.20973022)
文摘Micrometer-scale macroporous aluminosilicate catalyst was prepared via the sol-gel process. Results of catalytic cracking of 1, 3, 5-triisopropylbenzene showed that the synthesized aluminosilicate catalyst exhibited much higher activity than traditional ZSM-5 zeolite under the same condition. It is worth mentioning that the polymer product selectivity of aluminosilicate was much lower than that of ZSM-5, which might be useful for implementing the catalytic cracking process. The unique structure of macroporous aluminosilicate with interconnected-macropores and continuous skeletons was believed to be responsible for its excellent catalytic activity and low polymer product selectivity. Detailed discussion on the reaction pathway was also conducted.
文摘The little stiffness modulus, high voidage and long curing time has limited the use of CBEM's (cold bituminous emulsion mixtures) in road and highways to pavement experiencing low traffic. The aim of this study is to improve the properties of gap graded CRA (cold rolled asphal0 containing OPC (ordinary portland cement) as filler by addition of a by-product material as an activator. OPC was added to the CRA as a replacement to the conventional mineral filler (0%-100%), while LJMUA (Liverpool John Moores University Activator) was added as an additive in the range from 0%-3% by total mass of aggregate. Laboratory tests included stiffness modulus and uniaxial creep test to assess the mechanical properties. The results have shown a considerable improvement in the mechanical properties from the addition of LJMUA to the CRA containing OPC especially for the early life stiffness modulus that is the main disadvantage of the cold mixtures.