Mn^2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn^2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precur...Mn^2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn^2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn^2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃ and crystallize completely around 1000 ℃. The luminescent properties of Zn2SiO4/Mn^2+ phosphors were characterized by excitation and emission spectra.展开更多
文摘Mn^2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn^2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn^2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃ and crystallize completely around 1000 ℃. The luminescent properties of Zn2SiO4/Mn^2+ phosphors were characterized by excitation and emission spectra.