A novel micro-micro/mesoporous aluminosilicate ZSM-5-Y/MCM-41 composite molecular sieve with a MCM-41 type structure was synthesized through a novel process of the self-assembly of CTAB surfactant micellae with silica...A novel micro-micro/mesoporous aluminosilicate ZSM-5-Y/MCM-41 composite molecular sieve with a MCM-41 type structure was synthesized through a novel process of the self-assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of ZSM-5 zeolite. The physical properties of the ZSM-5- Y/MCM-41 composite molecular sieve were characterized by XRD, Py-FTIR and N2 adsorption-desorption techniques. Different kinds of molecular sieves including ZSM-5, Y zeolite, AI-MCM-41, ZSM-5/MCM-41 and ZSM-5-Y/MCM- 41 as cracking catalysts were investigated, using 1,3,5-triisopropylbenzene (1,3,5-TIPB) as the probe molecule. Catalytic tests showed that the ZSM-5-Y/MCM-41 composite molecular sieve exhibited higher catalytic activity compared with the microporous ZSM-5 zeolite, Y zeolite, mesoporous A1-MCM-41 molecular sieve and ZSM-5/MCM-41 composite molecular sieve under the same conditions. The remarkable catalytic activity was mainly attributed to the presence of the hierarchical pore structure and proper acidity in the ZSM-5-Y/MCM-41 composite catalyst. Meanwhile, a carbcnium ion mechanism was put forward for the cracking of 1,3,5-TIPB.展开更多
A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self-...A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self- assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of the beta zeolite. The physical properties of the LS-BFMZ composite zeolite were characterized using various techniques, including XRD, IR and SEM techniques. Meanwhile, a possible mechanism regarding the formation of the LS-BFMZ composite zeolite was proposed.展开更多
基金supported by the 973 plan item under Grants(2003CB615802)
文摘A novel micro-micro/mesoporous aluminosilicate ZSM-5-Y/MCM-41 composite molecular sieve with a MCM-41 type structure was synthesized through a novel process of the self-assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of ZSM-5 zeolite. The physical properties of the ZSM-5- Y/MCM-41 composite molecular sieve were characterized by XRD, Py-FTIR and N2 adsorption-desorption techniques. Different kinds of molecular sieves including ZSM-5, Y zeolite, AI-MCM-41, ZSM-5/MCM-41 and ZSM-5-Y/MCM- 41 as cracking catalysts were investigated, using 1,3,5-triisopropylbenzene (1,3,5-TIPB) as the probe molecule. Catalytic tests showed that the ZSM-5-Y/MCM-41 composite molecular sieve exhibited higher catalytic activity compared with the microporous ZSM-5 zeolite, Y zeolite, mesoporous A1-MCM-41 molecular sieve and ZSM-5/MCM-41 composite molecular sieve under the same conditions. The remarkable catalytic activity was mainly attributed to the presence of the hierarchical pore structure and proper acidity in the ZSM-5-Y/MCM-41 composite catalyst. Meanwhile, a carbcnium ion mechanism was put forward for the cracking of 1,3,5-TIPB.
基金supported by the 973 plan item under Grants(2003CB615802)
文摘A novel micro-micro-mesoporous aluminosilicate LS-BFMZ (low-silica-BEA(beta)-faujasite (Y)-mesoporous) composite zeolite with the MCM-41 type structure was synthesized through a novel process involving the self- assembly of CTAB surfactant micellae with silica-alumina source originated from alkaline treatment of the beta zeolite. The physical properties of the LS-BFMZ composite zeolite were characterized using various techniques, including XRD, IR and SEM techniques. Meanwhile, a possible mechanism regarding the formation of the LS-BFMZ composite zeolite was proposed.