The main objective of this work is to research complex physical-chemical processes of Al(l)-SiO2 interface and develop a new technology for producing foundry silumins based on amorphous microsilica obtained from silic...The main objective of this work is to research complex physical-chemical processes of Al(l)-SiO2 interface and develop a new technology for producing foundry silumins based on amorphous microsilica obtained from silicon production waste. Effective methods for producing hypoeutectic, eutectic, and hypereutectic silumins using amorphous microsilica were developed. Alloys with a silicon content of 7 wt.% were obtained by blowing preheated amorphous microsilica into the aluminum melt(t=900 ℃) along with the stream of argon followed by intense mixing. Alloys with a silicon content of 21 wt.% were manufactured by induction melting of a silicon-containing mixture(60% Si O2, 40%Al + 20%3 Na F·2 Al F3) subjected to the presintering when the amorphous microsilica was reduced to crystalline silicon. It is found that crystalline silicon, which is formed during the roasting of the tableted burden, is smoothly absorbed by the aluminum melt. Aluminum oxide, obtained during the redox reaction, dissolves in cryolite, after which aluminum and silicon are fused together and transferred to the melt. The calculation of the economic efficiency of producing silumins using amorphous microsilica demonstrates a quick project payback period, as well as a high level of its profitability.展开更多
文摘The main objective of this work is to research complex physical-chemical processes of Al(l)-SiO2 interface and develop a new technology for producing foundry silumins based on amorphous microsilica obtained from silicon production waste. Effective methods for producing hypoeutectic, eutectic, and hypereutectic silumins using amorphous microsilica were developed. Alloys with a silicon content of 7 wt.% were obtained by blowing preheated amorphous microsilica into the aluminum melt(t=900 ℃) along with the stream of argon followed by intense mixing. Alloys with a silicon content of 21 wt.% were manufactured by induction melting of a silicon-containing mixture(60% Si O2, 40%Al + 20%3 Na F·2 Al F3) subjected to the presintering when the amorphous microsilica was reduced to crystalline silicon. It is found that crystalline silicon, which is formed during the roasting of the tableted burden, is smoothly absorbed by the aluminum melt. Aluminum oxide, obtained during the redox reaction, dissolves in cryolite, after which aluminum and silicon are fused together and transferred to the melt. The calculation of the economic efficiency of producing silumins using amorphous microsilica demonstrates a quick project payback period, as well as a high level of its profitability.