Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope...Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope and transmission electron microscopy (TEM). The network formed during annealing was proved by TEM to be pearlite with very fine slices, while that formed during normalizing was proved by TEM and micro-hardness to be martensite or bainite. A theoretical analysis together with experimental studies has proved that the pearlite network is caused by carbon content increase in the interdendritic regions to which carbon atoms transfered from dendritic arms due to lower manganese content there during annealing, while the martensite or bainite network results from the higher hardenability of interdendritic regions where manganese content is higher. Experiments reveal that higher heating temperature or longer heating time enlarges the network size due to manganese homogenization. The network structure has a strengthening function like reinforcing rib, and the smaller the network size, the greater its strengthening capability.展开更多
The stainless Fe-Mn-Si shape memory alloy(SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si...The stainless Fe-Mn-Si shape memory alloy(SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction(XRD) pattern shows ε-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ε martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.展开更多
文摘Fe-C-Si-Mn alloy castings used as blades in hydroelectric generators are studied and found to contain network structures after some heat treatments. Castings after annealing and normalizing were analyzed by microscope and transmission electron microscopy (TEM). The network formed during annealing was proved by TEM to be pearlite with very fine slices, while that formed during normalizing was proved by TEM and micro-hardness to be martensite or bainite. A theoretical analysis together with experimental studies has proved that the pearlite network is caused by carbon content increase in the interdendritic regions to which carbon atoms transfered from dendritic arms due to lower manganese content there during annealing, while the martensite or bainite network results from the higher hardenability of interdendritic regions where manganese content is higher. Experiments reveal that higher heating temperature or longer heating time enlarges the network size due to manganese homogenization. The network structure has a strengthening function like reinforcing rib, and the smaller the network size, the greater its strengthening capability.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.3132016354)
文摘The stainless Fe-Mn-Si shape memory alloy(SMA) coating was prepared on the surface of AISI 304 stainless steel. The principal residual stress measured by the mechanical hole-drilling method indicates that the Fe-Mn-Si SMA cladding specimen possesses a lower residual stress compared with the 304 stainless steel cladding specimen. The mean stress values of the former and the latter on 10-mm-thick substrate are 4.751 MPa and 7.399 MPa, respectively. What's more, their deformation values on 2-mm-thick substrate are about 0° and 15°, respectively. Meanwhile, the variation trend and the value of the residual stress simulated by the ANSYS finite element software consist with experimental results. The X-ray diffraction(XRD) pattern shows ε-martensite exists in Fe-Mn-Si SMA coating, which verifies the mechanism of low residual stress. That's the γ→ε martensite phase transformation, which relaxes the residual stress of the specimen and reduces its deformation in the laser cladding processing.