CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties ...CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.展开更多
CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly co...CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly controlled by the ion-by-ion growth mechanism at the beginning of the film deposition, then the cluster-by-cluster mechanism came to be dominant. The growth rate increased faster with the increasing of temperature until the thickness reached the limitation, then thickness instead become thinner. The scanning electron micro- scope results revealed that the morphology of the CdS film changed from pinholes to rough, inhomogeneous surface with increasing deposition time and deposition temperature. The X- ray diffraction results showed the film structure was a mixture of two phases: hexagonal and cubic, and it was very important to controll deposition time to the film's crystal phase. All films in depth of approxilnate 100 nm existed above 65% transmittance, the absorption edge became "red-shift" with temperature rising. At 60 and 70℃, with 20 min deposited-time, the energy band gap was more than 2.42 eV and decreased with time, while at 80 and 90℃ the energy band gap was less than 2.42 eV and increased little when the time changed from 10min to 15 nfin at 80℃.展开更多
MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these...MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these films indicated that the as-gro wn polycrystalline ZnS_xSe_1-x thin films had a preferred orientat ion along the (1 11) planes. The evaluated crystal sizes as deduced from the FWHM of the XRD laye r peaks showed strong growth temperature dependence, with the optimized temperat ure being about 290℃. Both AFM and TEM measurements of these thin films also in dicated a similar growth temperature dependence. High quality ZnS_xSe_1- x thin fil m grown at the optimized temperature had the smoothest surface with lowest RMS v alue of 1.2 nm and TEM cross-sectional micrograph showing a well defined column ar structure.展开更多
A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide i...A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%.展开更多
The study of nano properties of PbSe (lead selenide) thin films deposited on TiO2 semi conductor film prepared by sol gel method was a new work destined to perfect the nano materials used in photovoltaic energy. The...The study of nano properties of PbSe (lead selenide) thin films deposited on TiO2 semi conductor film prepared by sol gel method was a new work destined to perfect the nano materials used in photovoltaic energy. The growth of the first group of the fihns (Set 1: P(9)) & P(14)) was based on the decomposition of lead citrate and sodium selenosulphite in the presence of sodium citrate and sodium hydroxide with ammonia and triethalamine (TEA) acting as the complexing agents and P.H stabilizers; while in the second group (Set 2: Pc15~), the reaction bath was made up of solutions of lead nitrate Pb(NO3)2, PVA (polyvinyl alcohol), H20 (distilled water), NH3 (ammonia), sodium selenosulphite (Na2SeSO3) and Triethalamine [N(CH2CH2OH)], which was used as the complexing agent. The deposited materials were identified by X-ray diffraction. In addition, nano optical and morphological investigations were also performed. The sample P9 has the lowest absorbance of about 0.3 nm in the ultra-violet region. It was found that there was a reduction in the optical absorbance as the wavelength increases. The optical band gap shows a range of 1.26-2.00 eV with sample PcIs~ having the lowest direct band gap.展开更多
We have developed a simple method to synthesize 6-seleno-2′-deoxyguanosine(SedG)by selectively replacing the 6-oxygen atom with selenium.This selenium-atom-specific modification(SAM)alters the optical properties of t...We have developed a simple method to synthesize 6-seleno-2′-deoxyguanosine(SedG)by selectively replacing the 6-oxygen atom with selenium.This selenium-atom-specific modification(SAM)alters the optical properties of the naturally occurring2′-deoxyguanosine(dG).Unlike the native dG,the UVabsorption ofSedG is significantly influenced by the pH of the aqueous solution.Moreover,SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions.Furthermore,SedG has noticeable fluorescence in non-aqueous solutions,indicating its sensitivity to environmental changes.This is the first time a fluorescent nucleoside by single-atom alteration has been observed.Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins,such as membrane-transporter proteins.展开更多
文摘CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.
文摘CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly controlled by the ion-by-ion growth mechanism at the beginning of the film deposition, then the cluster-by-cluster mechanism came to be dominant. The growth rate increased faster with the increasing of temperature until the thickness reached the limitation, then thickness instead become thinner. The scanning electron micro- scope results revealed that the morphology of the CdS film changed from pinholes to rough, inhomogeneous surface with increasing deposition time and deposition temperature. The X- ray diffraction results showed the film structure was a mixture of two phases: hexagonal and cubic, and it was very important to controll deposition time to the film's crystal phase. All films in depth of approxilnate 100 nm existed above 65% transmittance, the absorption edge became "red-shift" with temperature rising. At 60 and 70℃, with 20 min deposited-time, the energy band gap was more than 2.42 eV and decreased with time, while at 80 and 90℃ the energy band gap was less than 2.42 eV and increased little when the time changed from 10min to 15 nfin at 80℃.
文摘MBE growth of ZnS_xSe_1-x thin films on ITO coated glass substrate s were carried o ut using ZnS and Se sources with the substrate temperature ranging from 270℃ to 330℃. The XRD θ/2θ spectra resulted from these films indicated that the as-gro wn polycrystalline ZnS_xSe_1-x thin films had a preferred orientat ion along the (1 11) planes. The evaluated crystal sizes as deduced from the FWHM of the XRD laye r peaks showed strong growth temperature dependence, with the optimized temperat ure being about 290℃. Both AFM and TEM measurements of these thin films also in dicated a similar growth temperature dependence. High quality ZnS_xSe_1- x thin fil m grown at the optimized temperature had the smoothest surface with lowest RMS v alue of 1.2 nm and TEM cross-sectional micrograph showing a well defined column ar structure.
文摘A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%.
文摘The study of nano properties of PbSe (lead selenide) thin films deposited on TiO2 semi conductor film prepared by sol gel method was a new work destined to perfect the nano materials used in photovoltaic energy. The growth of the first group of the fihns (Set 1: P(9)) & P(14)) was based on the decomposition of lead citrate and sodium selenosulphite in the presence of sodium citrate and sodium hydroxide with ammonia and triethalamine (TEA) acting as the complexing agents and P.H stabilizers; while in the second group (Set 2: Pc15~), the reaction bath was made up of solutions of lead nitrate Pb(NO3)2, PVA (polyvinyl alcohol), H20 (distilled water), NH3 (ammonia), sodium selenosulphite (Na2SeSO3) and Triethalamine [N(CH2CH2OH)], which was used as the complexing agent. The deposited materials were identified by X-ray diffraction. In addition, nano optical and morphological investigations were also performed. The sample P9 has the lowest absorbance of about 0.3 nm in the ultra-violet region. It was found that there was a reduction in the optical absorbance as the wavelength increases. The optical band gap shows a range of 1.26-2.00 eV with sample PcIs~ having the lowest direct band gap.
基金financially supported by the US National Science Foundation(NSF,MCB-0824837)the Georgia Cancer Coalition(GCC)Distinguished Cancer Clinicians and Scientists Awards
文摘We have developed a simple method to synthesize 6-seleno-2′-deoxyguanosine(SedG)by selectively replacing the 6-oxygen atom with selenium.This selenium-atom-specific modification(SAM)alters the optical properties of the naturally occurring2′-deoxyguanosine(dG).Unlike the native dG,the UVabsorption ofSedG is significantly influenced by the pH of the aqueous solution.Moreover,SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions.Furthermore,SedG has noticeable fluorescence in non-aqueous solutions,indicating its sensitivity to environmental changes.This is the first time a fluorescent nucleoside by single-atom alteration has been observed.Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins,such as membrane-transporter proteins.