CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties ...CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.展开更多
CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly co...CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly controlled by the ion-by-ion growth mechanism at the beginning of the film deposition, then the cluster-by-cluster mechanism came to be dominant. The growth rate increased faster with the increasing of temperature until the thickness reached the limitation, then thickness instead become thinner. The scanning electron micro- scope results revealed that the morphology of the CdS film changed from pinholes to rough, inhomogeneous surface with increasing deposition time and deposition temperature. The X- ray diffraction results showed the film structure was a mixture of two phases: hexagonal and cubic, and it was very important to controll deposition time to the film's crystal phase. All films in depth of approxilnate 100 nm existed above 65% transmittance, the absorption edge became "red-shift" with temperature rising. At 60 and 70℃, with 20 min deposited-time, the energy band gap was more than 2.42 eV and decreased with time, while at 80 and 90℃ the energy band gap was less than 2.42 eV and increased little when the time changed from 10min to 15 nfin at 80℃.展开更多
Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminu...Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tungsten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct electrical and chemical contact with the underside substrate electrode. The as-deposited samples were annealed at 450 ℃ in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 um, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and high resolution transmission electron microscopy showed that chalcopyrite polycrystalline structure and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.展开更多
Perovskite solar cells(PSCs)have attracted worldwide attention due to their high efficiency and low manufacturing cost.As the largest supplier of photovoltaic modules,China has made huge endeavors in the research on P...Perovskite solar cells(PSCs)have attracted worldwide attention due to their high efficiency and low manufacturing cost.As the largest supplier of photovoltaic modules,China has made huge endeavors in the research on PSCs.In 2019,Chinese research groups were still holding the top position for paper publications in the world.Both the efficiency and the stability of the device have been steadily increasing,pushing forward the commercialization of PSCs step by step.This review summarizes the highlights of China’s PSC research progress in 2019 and briefly introduces the development of PSC modules in industry.展开更多
The power conversion efficiency for single-junction solar cells is limited by the Shockley-Quiesser limit.An effective approach to realize high efficiency is to develop multi-junction cells.These years have witnessed ...The power conversion efficiency for single-junction solar cells is limited by the Shockley-Quiesser limit.An effective approach to realize high efficiency is to develop multi-junction cells.These years have witnessed the rapid development of organic–inorganic perovskite solar cells.The excellent optoelectronic properties and tunable bandgaps of perovskite materials make them potential candidates for developing tandem solar cells,by combining with silicon,Cu(In,Ga)Se_(2)and organic solar cells.In this review,we present the recent progress of perovskite-based tandem solar cells,including perovskite/silicon,perovskite/perovskite,perovskite/Cu(In,Ga)Se_(2),and perovskite/organic cells.Finally,the challenges and opportunities for perovskite-based tandem solar cells are discussed.展开更多
文摘CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.
文摘CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly controlled by the ion-by-ion growth mechanism at the beginning of the film deposition, then the cluster-by-cluster mechanism came to be dominant. The growth rate increased faster with the increasing of temperature until the thickness reached the limitation, then thickness instead become thinner. The scanning electron micro- scope results revealed that the morphology of the CdS film changed from pinholes to rough, inhomogeneous surface with increasing deposition time and deposition temperature. The X- ray diffraction results showed the film structure was a mixture of two phases: hexagonal and cubic, and it was very important to controll deposition time to the film's crystal phase. All films in depth of approxilnate 100 nm existed above 65% transmittance, the absorption edge became "red-shift" with temperature rising. At 60 and 70℃, with 20 min deposited-time, the energy band gap was more than 2.42 eV and decreased with time, while at 80 and 90℃ the energy band gap was less than 2.42 eV and increased little when the time changed from 10min to 15 nfin at 80℃.
文摘Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tungsten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct electrical and chemical contact with the underside substrate electrode. The as-deposited samples were annealed at 450 ℃ in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 um, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and high resolution transmission electron microscopy showed that chalcopyrite polycrystalline structure and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.
基金supported by the National Natural Science Foundation of China(11834011,11674219)。
文摘Perovskite solar cells(PSCs)have attracted worldwide attention due to their high efficiency and low manufacturing cost.As the largest supplier of photovoltaic modules,China has made huge endeavors in the research on PSCs.In 2019,Chinese research groups were still holding the top position for paper publications in the world.Both the efficiency and the stability of the device have been steadily increasing,pushing forward the commercialization of PSCs step by step.This review summarizes the highlights of China’s PSC research progress in 2019 and briefly introduces the development of PSC modules in industry.
基金the National Natural Science Foundation of China(51773045,21772030,51922032,and 21961160720)for financial support。
文摘The power conversion efficiency for single-junction solar cells is limited by the Shockley-Quiesser limit.An effective approach to realize high efficiency is to develop multi-junction cells.These years have witnessed the rapid development of organic–inorganic perovskite solar cells.The excellent optoelectronic properties and tunable bandgaps of perovskite materials make them potential candidates for developing tandem solar cells,by combining with silicon,Cu(In,Ga)Se_(2)and organic solar cells.In this review,we present the recent progress of perovskite-based tandem solar cells,including perovskite/silicon,perovskite/perovskite,perovskite/Cu(In,Ga)Se_(2),and perovskite/organic cells.Finally,the challenges and opportunities for perovskite-based tandem solar cells are discussed.