An industrial electrolytic cell was designed for the electrochemical synthesis of N-methylhydroxylamine hydrochloride (N-MHA). Copper was used as the cathode, graphite as the anode, and a cation membrane as the sepa...An industrial electrolytic cell was designed for the electrochemical synthesis of N-methylhydroxylamine hydrochloride (N-MHA). Copper was used as the cathode, graphite as the anode, and a cation membrane as the separator. The results show that N-MHA with a high purity of 99% can be electrosynthesized directly from nitromethane in HC1 solution. Under a constant current of 1000-2500A.m^-2 in the temperature of 30-50℃, the average yield, current efficiency, and reaction selectivity were 65%, 70%, and 99%, respectively. Graphite electrode and membrane material can be used continuously in the preparative electrolysis for 5000h. Moreover, the effects of the electrode and membrane materials, current intensity, electrolyte temperature, and other associated parameters on the electrosynthesis results were investigated. The direct current power consumption was 8151.3kW-h-(1000kg N-MHA)^ -1. This method is a simple separation process with limited contamination and hence, is a new green synthesis method for the industrial production of N-MHA.展开更多
Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfa...Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.展开更多
基金Project supported by the National Natural Sciences Foundation of China(Nos.21402116,21502111,21572126)the Key Scientific and Technological Project of Henan Province(No.172102210099)the Key Science Research of Education Committee in Henan Province(No.15A150072)~~
文摘An industrial electrolytic cell was designed for the electrochemical synthesis of N-methylhydroxylamine hydrochloride (N-MHA). Copper was used as the cathode, graphite as the anode, and a cation membrane as the separator. The results show that N-MHA with a high purity of 99% can be electrosynthesized directly from nitromethane in HC1 solution. Under a constant current of 1000-2500A.m^-2 in the temperature of 30-50℃, the average yield, current efficiency, and reaction selectivity were 65%, 70%, and 99%, respectively. Graphite electrode and membrane material can be used continuously in the preparative electrolysis for 5000h. Moreover, the effects of the electrode and membrane materials, current intensity, electrolyte temperature, and other associated parameters on the electrosynthesis results were investigated. The direct current power consumption was 8151.3kW-h-(1000kg N-MHA)^ -1. This method is a simple separation process with limited contamination and hence, is a new green synthesis method for the industrial production of N-MHA.
基金Supported by Tianjin Science and Technology Committee (No. 033604711)Science and Technology Foundation of Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (No. 03-2-064)
文摘Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.