针对国际水协(IWA)开发的基准仿真模型(Benchmark simulation model No.1,BSM1)中第5分区溶解氧质量分数和第2分区硝态氮质量分数的控制问题,提出了一种基于神经网络的多变量预测控制系统。控制系统中主要包括两部分:神经网络辨识器,用...针对国际水协(IWA)开发的基准仿真模型(Benchmark simulation model No.1,BSM1)中第5分区溶解氧质量分数和第2分区硝态氮质量分数的控制问题,提出了一种基于神经网络的多变量预测控制系统。控制系统中主要包括两部分:神经网络辨识器,用于提取对象的输出数据;神经网络控制器,用于输出控制变量。仿真结果表明:基于神经网络的预测控制系统具有较好的适应性和鲁棒性。展开更多
Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of ino...Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.展开更多
In this study, we conducted investigations in the Changjiang (Yangtze) River estuary and adjacent waters (CREAW) in June and November of 2014. We collected water samples from different depths to analyze the nitrog...In this study, we conducted investigations in the Changjiang (Yangtze) River estuary and adjacent waters (CREAW) in June and November of 2014. We collected water samples from different depths to analyze the nitrogen isotopic compositions of nitrate, nutrient concentrations (including inorganic N, P, and Si), and other physical and biological parameters, along with the vertical distribution and seasonal variations of these parameters. The compositions of nitrogen isotope in nitrate were measured with the denitrifier method. Results show that the Changjiang River diluted water (CDW) was the main factor affecting the shallow waters (above 10 m) of the CREAW, and CDW tended to influence the northern areas in June and the southern areas in November. 615Nrqo~ values in CDW ranged from 3.21%o-3.55%o. In contrast, the deep waters (below 30 m) were affected by the subsurface water of the Kuroshio Current, which intruded into the waters near 3 I^N in June. The ~iI^NNo3 values of these waters were 6.03%0-7.6%0, slightly higher than the values of the Kuroshio Current. Nitrate assimilation by phytoplankton in the shallow waters of the study area varied seasonally. Because of the favorable temperature and nutrient conditions in June, abundant phytoplankton growth resulted in harmful algae blooms (HABs). Therefore, nitrate assimilation was strong in June and weak in November. The ~15NNo3 fractionations caused by assimilation of phytoplankton were 4.57%0 and 4.41%o in the shallow waters in June and November, respectively. These results are consistent with previous laboratory cultures and in situ investigations. Nitrification processes were observed in some deep waters of the study area, and they were more apparent in November than in June. The fractionation values of nitrification ranged from 24%0-25%o, which agrees with results for Nitrosospira tenuis reported by previous studies.展开更多
文摘针对国际水协(IWA)开发的基准仿真模型(Benchmark simulation model No.1,BSM1)中第5分区溶解氧质量分数和第2分区硝态氮质量分数的控制问题,提出了一种基于神经网络的多变量预测控制系统。控制系统中主要包括两部分:神经网络辨识器,用于提取对象的输出数据;神经网络控制器,用于输出控制变量。仿真结果表明:基于神经网络的预测控制系统具有较好的适应性和鲁棒性。
基金supported by the National Key Research and development Program of China (2016YFC0502602)the National Natural Science Foundation of China (U1612441)the project of high-level innovative talents of Guizhou Province [2015(4035)]
文摘Natural nitrogen isotope composition(δ^(15)N) is an indicator of nitrogen sources and is useful in the investigation of nitrogen cycling in organisms and ecosystems. δ^(15)N is also used to study assimilation of inorganic nitrogen. However, the foliar δ^(15)N of intact plants, which is a consequence of nitrate assimilation occurring in the roots and shoots, is not suited for studying nitrate assimilation in cases where nitrate is the sole nitrogen source. In this study, Orychophragmus violaceus(Ov) and Brassica napus(Bn) plantlets, in which nitrate assimilation occurred in the leaves, were used to study the relationship between foliar δ^(15)N and nitrate assimilation.The plantlets were grown in vitro in culture media with different nitrate concentrations, and no root formation occurred for the plantlets during the multiplication stage.Nitrogen isotope fractionation occurred in both the Ov and the Bn plantlets under all treatments. Furthermore, the foliar nitrogen content of both the Ov and Bn plantlets increased with increasing nitrate concentration. Foliar nitrogen isotope fractionation was negatively correlated with foliar nitrogen content for both the Ov and Bn plantlets. Our results suggest that the foliar nitrogen isotope fractionation value could be employed to evaluate nitrate assimilation ability and leaf nitrate reductase activity.Moreover, high external nitrate concentrations couldcontribute to improved foliar nitrogen content and enhanced nitrate assimilation ability.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020302)the National Natural Science Foundation of China(No.41276116)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U 1406403)
文摘In this study, we conducted investigations in the Changjiang (Yangtze) River estuary and adjacent waters (CREAW) in June and November of 2014. We collected water samples from different depths to analyze the nitrogen isotopic compositions of nitrate, nutrient concentrations (including inorganic N, P, and Si), and other physical and biological parameters, along with the vertical distribution and seasonal variations of these parameters. The compositions of nitrogen isotope in nitrate were measured with the denitrifier method. Results show that the Changjiang River diluted water (CDW) was the main factor affecting the shallow waters (above 10 m) of the CREAW, and CDW tended to influence the northern areas in June and the southern areas in November. 615Nrqo~ values in CDW ranged from 3.21%o-3.55%o. In contrast, the deep waters (below 30 m) were affected by the subsurface water of the Kuroshio Current, which intruded into the waters near 3 I^N in June. The ~iI^NNo3 values of these waters were 6.03%0-7.6%0, slightly higher than the values of the Kuroshio Current. Nitrate assimilation by phytoplankton in the shallow waters of the study area varied seasonally. Because of the favorable temperature and nutrient conditions in June, abundant phytoplankton growth resulted in harmful algae blooms (HABs). Therefore, nitrate assimilation was strong in June and weak in November. The ~15NNo3 fractionations caused by assimilation of phytoplankton were 4.57%0 and 4.41%o in the shallow waters in June and November, respectively. These results are consistent with previous laboratory cultures and in situ investigations. Nitrification processes were observed in some deep waters of the study area, and they were more apparent in November than in June. The fractionation values of nitrification ranged from 24%0-25%o, which agrees with results for Nitrosospira tenuis reported by previous studies.