High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide a...High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.展开更多
In order to investigate and compare the effects of Tetradium ruticarpum and Glycyrrhizae extracts in terms of scavenging sodium nitrite and inhibiting N-ni- troso compounds formation, the 1_9(3^3) orthogonal test wa...In order to investigate and compare the effects of Tetradium ruticarpum and Glycyrrhizae extracts in terms of scavenging sodium nitrite and inhibiting N-ni- troso compounds formation, the 1_9(3^3) orthogonal test was conducted to extract the active components. In addition, the capacities of scavenging sodium nitrite and of in- hibiting the N-nitroso compounds formation were measured to confirm the optimum condition of extracting. When the scavenging rate was considered as the main index, the maximum capacities of scavenging sodium nitrite by the extracts of Tetradi- urn ruticarpum and Glycyrrhizae were 0.836 5 and 0.558 0, respectively. Further- more, when the disconnection rate was considered as the main index, the maximum capacities of inhibiting the N-nitroso compounds formation by the extracts of Tetradi- urn ruticarpum and G/ycyrrhizae were 0.922 8 and 0.625 6, respectively. As a re- suit, the capacity of inhibiting nitrosation reaction by Tetradium ruticarpum was shown to be much stronger than G/ycyrrhizae, no matter the scavenging rate or the disconnection rate as the main index to be considered.展开更多
As clean energy,the microwave is commonly used to pretreat various ores.In this work,the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effect...As clean energy,the microwave is commonly used to pretreat various ores.In this work,the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effects from microwave were systematically investigated.Results indicated that limonitic laterite had high microwave absorbance.After microwave pretreatment,the microstructure of the laterite became less aggregated and more porous and the main phase transformed from goethite to hematite that improved leaching in nitric acid(1.2 kg HNO3/kg ore);Ni,Co,Fe,and Mg extraction ratios were 95.2%,98.1%,1.8%and 15%,respectively,after leaching for 60 min at 200°C and 500 r/min.Furthermore,in the process of goethite to hematite by microwave pretreatment,the nickel-containing mineral is activated,which makes nickel be leached easily.The leaching process has high Ni extraction ratio compared to that without microwave(82%)and conventional pretreatment(90.4%).Therefore,microwave pretreatment of limonitic laterite before nitric acid pressure leaching is an effective way to improve the selectivity and extraction of the leach.展开更多
A hydrometallurgical process for tungsten extraction and recovery from scheelite is reported.The technology includes leaching scheelite using phosphoric acid as chelating agent in nitric acid solutions,extracting tung...A hydrometallurgical process for tungsten extraction and recovery from scheelite is reported.The technology includes leaching scheelite using phosphoric acid as chelating agent in nitric acid solutions,extracting tungsten by solvent extraction and reusing leaching agent.In the leaching process,affecting factors,such as temperature,leaching time,nitric acid and dosage of phosphoric acid,were examined on recovery of tungsten.Results show that more than 97%of tungsten could be extracted under conditions of leaching temperature of 80-90°C,HNO3 concentration of 3.0-4.0 mol/L,liquild-to-soild ratio of 10:1,H3PO4 dosage of 3 stoichiometric ratio and leaching time of 3 h.Solvent extraction was then employed for the W recovery from the leachate with a organic system of 40%(v/v)N235,30%(v/v)TBP,and 30%sulfonated kerosene.Approximately 99.93%of W was extracted and ammonium tungstate solution containing 193 g/L W was obtained with a stripping rate of 98.10%under the optimized conditions.展开更多
Tributyl phosphate (TBP) solvent was used for impregnation into Amberlite XAD-16 nonionic polymeric resin beads using the wet method to prepare solvent impregnated resin (SIR). Undiluted TBP in a ratio to the resi...Tributyl phosphate (TBP) solvent was used for impregnation into Amberlite XAD-16 nonionic polymeric resin beads using the wet method to prepare solvent impregnated resin (SIR). Undiluted TBP in a ratio to the resin support (volume to mass) of 6.0 at room temperature (RT) in 24 h was impregnated the resin with a mass ratio of 1.944, while the prepared gross sample of SIR at the ratio of solvent to resin of 3.0 was impregnated with a mass ratio of 1.88. Cerium(Ⅳ) oxide concentrate, prepared from crude Egyptian monazite sand, containing 37% cerium, 1.6% thorium and about 40% the other trivalent rare earth oxides, was used to prepare cerium(Ⅳ) nitrate solution for extraction using the prepared SIR. The impregnated resin was satisfactory for Ce(Ⅳ) extraction from nitric acid medium at room temperature. Cerium loading capacity of the impregnated resin reached 95.6% of the calculated theoretical capacity (173 g/kg (Ce/SIR)) under the conditions of 51.57 g/L cerium and 2.48 g/L thorium, 5.0 mol/L free nitric acid, solution to resin ratio of 10.0 and contacting the phases for 5.0 min. The loading capacity reached 98.75% when cerium concentration was increased to 91.43 g/L under the same conditions.展开更多
Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process...Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.展开更多
文摘High pure tellurium was prepared from raw tellurium containing copper and selenium by chemical method containing oxidation with concentrated nitric acid, leaching with hydrochloric acid, reducing with sulfur dioxide and treating in hydrogen atmosphere at high temperature. Removal ratio of Cu in raw tellurium reaches 99% after raw tellurium is oxidized and leached with HNO3(69%) under the following conditions: 0.96 times stoichiometric quantity of concentrated nitric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Leaching ratio of Te reaches 99% after Te is leached with hydrochloric acid under the following conditions: 1.67 times stoichiometric quantity of hydrochloric acid, 4:1 of ratio of liquid to solid, 20 °C of reaction temperature and 30 min of reaction time. Tellurium powder(99.95%) is obtained when Te(IV) in leachate is reduced with sulfur dioxide. The purity of tellurium increases from 99.954% to 99.999 6% after tellurium(99.95%) is treated in hydrogen atmosphere at 723.15 K for 30 min.
基金Supported by National Natural Science Foundation of China(31372159)Scientific Research Foundation for The Junior Teachers in Beijing Normal University,Zhuhai(201353015)Innovative Foundation Project of Beijing Normal University,Zhuhai(1317713016)~~
文摘In order to investigate and compare the effects of Tetradium ruticarpum and Glycyrrhizae extracts in terms of scavenging sodium nitrite and inhibiting N-ni- troso compounds formation, the 1_9(3^3) orthogonal test was conducted to extract the active components. In addition, the capacities of scavenging sodium nitrite and of in- hibiting the N-nitroso compounds formation were measured to confirm the optimum condition of extracting. When the scavenging rate was considered as the main index, the maximum capacities of scavenging sodium nitrite by the extracts of Tetradi- urn ruticarpum and Glycyrrhizae were 0.836 5 and 0.558 0, respectively. Further- more, when the disconnection rate was considered as the main index, the maximum capacities of inhibiting the N-nitroso compounds formation by the extracts of Tetradi- urn ruticarpum and G/ycyrrhizae were 0.922 8 and 0.625 6, respectively. As a re- suit, the capacity of inhibiting nitrosation reaction by Tetradium ruticarpum was shown to be much stronger than G/ycyrrhizae, no matter the scavenging rate or the disconnection rate as the main index to be considered.
基金Project(51974025)supported by the National Natural Science Foundation of ChinaProject(2018IA055)supported by the International Cooperation Project of Key Research and Development Plan of Yunan Province,ChinaProject(JKY2019-09)supported by State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization,China。
文摘As clean energy,the microwave is commonly used to pretreat various ores.In this work,the microwave dielectric properties of limonitic laterite ore were measured by resonant cavity perturbation technique and the effects from microwave were systematically investigated.Results indicated that limonitic laterite had high microwave absorbance.After microwave pretreatment,the microstructure of the laterite became less aggregated and more porous and the main phase transformed from goethite to hematite that improved leaching in nitric acid(1.2 kg HNO3/kg ore);Ni,Co,Fe,and Mg extraction ratios were 95.2%,98.1%,1.8%and 15%,respectively,after leaching for 60 min at 200°C and 500 r/min.Furthermore,in the process of goethite to hematite by microwave pretreatment,the nickel-containing mineral is activated,which makes nickel be leached easily.The leaching process has high Ni extraction ratio compared to that without microwave(82%)and conventional pretreatment(90.4%).Therefore,microwave pretreatment of limonitic laterite before nitric acid pressure leaching is an effective way to improve the selectivity and extraction of the leach.
基金Project(51334008) supported by the National Natural Science Foundation of China
文摘A hydrometallurgical process for tungsten extraction and recovery from scheelite is reported.The technology includes leaching scheelite using phosphoric acid as chelating agent in nitric acid solutions,extracting tungsten by solvent extraction and reusing leaching agent.In the leaching process,affecting factors,such as temperature,leaching time,nitric acid and dosage of phosphoric acid,were examined on recovery of tungsten.Results show that more than 97%of tungsten could be extracted under conditions of leaching temperature of 80-90°C,HNO3 concentration of 3.0-4.0 mol/L,liquild-to-soild ratio of 10:1,H3PO4 dosage of 3 stoichiometric ratio and leaching time of 3 h.Solvent extraction was then employed for the W recovery from the leachate with a organic system of 40%(v/v)N235,30%(v/v)TBP,and 30%sulfonated kerosene.Approximately 99.93%of W was extracted and ammonium tungstate solution containing 193 g/L W was obtained with a stripping rate of 98.10%under the optimized conditions.
文摘Tributyl phosphate (TBP) solvent was used for impregnation into Amberlite XAD-16 nonionic polymeric resin beads using the wet method to prepare solvent impregnated resin (SIR). Undiluted TBP in a ratio to the resin support (volume to mass) of 6.0 at room temperature (RT) in 24 h was impregnated the resin with a mass ratio of 1.944, while the prepared gross sample of SIR at the ratio of solvent to resin of 3.0 was impregnated with a mass ratio of 1.88. Cerium(Ⅳ) oxide concentrate, prepared from crude Egyptian monazite sand, containing 37% cerium, 1.6% thorium and about 40% the other trivalent rare earth oxides, was used to prepare cerium(Ⅳ) nitrate solution for extraction using the prepared SIR. The impregnated resin was satisfactory for Ce(Ⅳ) extraction from nitric acid medium at room temperature. Cerium loading capacity of the impregnated resin reached 95.6% of the calculated theoretical capacity (173 g/kg (Ce/SIR)) under the conditions of 51.57 g/L cerium and 2.48 g/L thorium, 5.0 mol/L free nitric acid, solution to resin ratio of 10.0 and contacting the phases for 5.0 min. The loading capacity reached 98.75% when cerium concentration was increased to 91.43 g/L under the same conditions.
基金Project(51904104) supported by the National Natural Science Foundation of ChinaProject(2020JJ5174) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2019M662780) supported by China Postdoctoral Science FoundationProject(19C0746) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2021-2843) supported by College Student Innovation and Entrepreneurship Training Program of Hunan Province,China。
文摘Phosphogypsum(PG)is a potential resource for rare earth elements(REEs).Several studies have been carried out on REE leaching from PG.However,few in-depth studies have investigated the kinetics of this leaching process.In this study,the leaching kinetics of REEs from PG in nitric acid at different temperatures were explored in depth.The experiments show that the maximum leaching recovery for ΣREE was 58.5%,75.9%and 83.4%at 30,60 and 80℃,respectively.Additionally,among La,Ce,Y and Nd,Y had the highest leaching rate.A new shrinking core model(SCM)based on the dissolution reaction of a cylindrical solid particle with interfacial transfer and diffusion across the product layer as the rate-controlling step was deduced and could well fit the leaching process of REEs from PG.The activation energies for the leaching of La,Ce,Y and Nd were determined on the basis of the new cylindrical SCM.In summary,the cylindrical SCM was a more suitable fitting model than the spherical SCM,and the interfacial transfer and diffusion across the product layer were the rate-controlling step for REE leaching from the PG sample.