Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. T...Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.展开更多
For the recycling of Pd and Ag from high-level liquid waste(HLLW), the electrochemical behaviors of Pd and Ag in the simulated HNO_(3) solutions were investigated by cyclic voltammetry and potentiostatic deposition.Sc...For the recycling of Pd and Ag from high-level liquid waste(HLLW), the electrochemical behaviors of Pd and Ag in the simulated HNO_(3) solutions were investigated by cyclic voltammetry and potentiostatic deposition.Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to-observe the deposits morphology and to evaluate their composition. The results indicate that the formation of NO_(2)^(-)electrodeposited. When Pd and Ag are electrodeposited together, more metals are gained in the same time, and the deposited Ag does not dissolve in this situation. The metals are electrodeposited completely at the potentials from -0.4 to -0.6 V(vs MSE) and the deposits contai-n Ag and PdHx. The electrodeposition of Pd can boost h-ydrogen evolution,and then the reaction between H;and NO_(2)^(-)is sped up, thereby lowering the concentration of NO_(2)^(-)and inhibiting the dissolution of Ag.展开更多
基金Supported by the Key International Cooperation Project of NSFC, Key Project of NSFC (No. 50138010)863 Hi-Technology Research and Development Program of China (2003AA601010).
文摘Nitrogen and phosphorous concentrations of effluent water must be taken into account for the design and operation of wastewater treatment plants. In addition, the requirement for effluent quality is becoming strict. Therefore, intelligent control approaches are recently required in removing biological nutrient. In this study, fuzzy control has been successfully applied to improve the nitrogen removal. Experimental results showed that a close relationship between nitrate concentration and oxidation-reduction potential (ORP) at the end of anoxic zone was found for anoxic/oxic (A/O) nitrogen removal process treating synthetic wastewater. ORP can be used as online fuzzy control parameter of nitrate recirculation and external carbon addition. The established fuzzy logic controller that includes two inputs and one output can maintain ORP value at - 86 mV and - 90 mV by adjusting the nitrate recirculation flow and external carbon dosage respectively to realize the optimal control of nitrogen removal, improving the effluent quality and reducing the operating cost.
基金the financial supports from the National Natural Science Foundation of China (No. 11975082)。
文摘For the recycling of Pd and Ag from high-level liquid waste(HLLW), the electrochemical behaviors of Pd and Ag in the simulated HNO_(3) solutions were investigated by cyclic voltammetry and potentiostatic deposition.Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were used to-observe the deposits morphology and to evaluate their composition. The results indicate that the formation of NO_(2)^(-)electrodeposited. When Pd and Ag are electrodeposited together, more metals are gained in the same time, and the deposited Ag does not dissolve in this situation. The metals are electrodeposited completely at the potentials from -0.4 to -0.6 V(vs MSE) and the deposits contai-n Ag and PdHx. The electrodeposition of Pd can boost h-ydrogen evolution,and then the reaction between H;and NO_(2)^(-)is sped up, thereby lowering the concentration of NO_(2)^(-)and inhibiting the dissolution of Ag.