A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N...A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) in pak-choi (Brassica chinensis L.) shoots. When 20% of nitrate-N was replaced with arginine (Arg) compared to the full nitrate treatment, pak-choi shoot fresh and dry weights increased significantly (P ≤ 0.05), but when 20% of nitrate-N was replaced with alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), methionine (Met), aspartic acid (Asp), glutamic acid (Glu), lysine (Lys), glycine (Gly), serine (Ser), threonine (Thr), cysteine (Cys), and tyrosine (Tyr), shoot fresh and dry weights decreased significantly (P ≤ 0.05). After replacing 20% of nitrate-N with asparagine (Asn) and glutamine (Gin), shoot fresh and dry weights were unaffected. Compared to the full nitrate treatment, amino acid replacement treatments, except for Cys, Gly, histidine (His), and Arg, significantly reduced (P ≤0.05) nitrate concentrations in plant shoots. Except for Cys, Leu, Pro, and Met, total N concentrations in plant tissues of the other amino acid treatments significantly increased (P ≤ 0.05). Amino acids also affected total P and K concentrations, but the effects differed depending on individual amino acids. To improve pak-choi shoot quality, Gln and Asn, due to their insignificant effects on pak-choi growth, their significant reduction in nitrate concentrations, and their increase in macroelement content in plants, may be used to partially replace nitrate-N.展开更多
The effects of different chemical fertilizer combinations (N, P and K) oncrop yield, N uptake and nitrate distribution and accumulation to a depth of 100 cm were studied ina cinnamon fluvo-aquic soil profile (Beijing)...The effects of different chemical fertilizer combinations (N, P and K) oncrop yield, N uptake and nitrate distribution and accumulation to a depth of 100 cm were studied ina cinnamon fluvo-aquic soil profile (Beijing) with a continuous winter wheat-summer maize croppingsystem for nine years. The experiment consisted of 7 treatments: no fertilizer control (CK); Nalone, N in combination with K (NK), P (NP), and P and K (NPK and N1PK); and P and K in combinationwithout N (PK). The rate of N was 150 kg ha^(-1) for the N treatments except Treatment N1PK withhigher N rate (195 kg ha^(-1)), and the rates of P (P_2O_5) and K (K2O) were 75 and 37.5 kg ha^(-1),respectively. The applications of N combined with P and K (NK, NP and NPK) resulted in higher cropyields than a single application of N. The yields followed the order: NPK > NP > N1PK > PK > NK > N> CK for winter wheat, and NPK > N1PK > NP > NK > N > PK > CK for summer maize. Supplement of N withP or K, or both P and K resulted in a higher average N uptake of the two crops, which was in adecreasing order NPK > NP > N1PK > NK > N > PK > CK. The combinations also increased apparent Nrecovery more than N alone and CK. The nitrate content in the profile was thus reduced more in thecombination treatments. The nitrate accumulation in the soil profiles followed the order: N > NK >N1PK > NPK > NP > CK > PK. Higher N uptake by the adequately fertilized crops (Treatment NPK)reduced nitrate accumulation in the profile and thus reduced nitrate leaching. The optimum N:P:Kratio was thus of paramount importance in increasing yields and N uptake of crops and reducingnitrate leaching losses.展开更多
基金Project supported by the National Natural Science Foundation of China (No.30370838).
文摘A hydroponic experiment was carried out to determine the influence of replacing 20% of nitrate-N in nutrient solutions with 20 individual amino acids on growth, nitrate accumulation, and concentrations of nitrogen (N), phosphorus (P), and potassium (K) in pak-choi (Brassica chinensis L.) shoots. When 20% of nitrate-N was replaced with arginine (Arg) compared to the full nitrate treatment, pak-choi shoot fresh and dry weights increased significantly (P ≤ 0.05), but when 20% of nitrate-N was replaced with alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), proline (Pro), phenylalanine (Phe), methionine (Met), aspartic acid (Asp), glutamic acid (Glu), lysine (Lys), glycine (Gly), serine (Ser), threonine (Thr), cysteine (Cys), and tyrosine (Tyr), shoot fresh and dry weights decreased significantly (P ≤ 0.05). After replacing 20% of nitrate-N with asparagine (Asn) and glutamine (Gin), shoot fresh and dry weights were unaffected. Compared to the full nitrate treatment, amino acid replacement treatments, except for Cys, Gly, histidine (His), and Arg, significantly reduced (P ≤0.05) nitrate concentrations in plant shoots. Except for Cys, Leu, Pro, and Met, total N concentrations in plant tissues of the other amino acid treatments significantly increased (P ≤ 0.05). Amino acids also affected total P and K concentrations, but the effects differed depending on individual amino acids. To improve pak-choi shoot quality, Gln and Asn, due to their insignificant effects on pak-choi growth, their significant reduction in nitrate concentrations, and their increase in macroelement content in plants, may be used to partially replace nitrate-N.
基金Project supported by the Ministry of Agriculture, China (No. 95-17-03-01).
文摘The effects of different chemical fertilizer combinations (N, P and K) oncrop yield, N uptake and nitrate distribution and accumulation to a depth of 100 cm were studied ina cinnamon fluvo-aquic soil profile (Beijing) with a continuous winter wheat-summer maize croppingsystem for nine years. The experiment consisted of 7 treatments: no fertilizer control (CK); Nalone, N in combination with K (NK), P (NP), and P and K (NPK and N1PK); and P and K in combinationwithout N (PK). The rate of N was 150 kg ha^(-1) for the N treatments except Treatment N1PK withhigher N rate (195 kg ha^(-1)), and the rates of P (P_2O_5) and K (K2O) were 75 and 37.5 kg ha^(-1),respectively. The applications of N combined with P and K (NK, NP and NPK) resulted in higher cropyields than a single application of N. The yields followed the order: NPK > NP > N1PK > PK > NK > N> CK for winter wheat, and NPK > N1PK > NP > NK > N > PK > CK for summer maize. Supplement of N withP or K, or both P and K resulted in a higher average N uptake of the two crops, which was in adecreasing order NPK > NP > N1PK > NK > N > PK > CK. The combinations also increased apparent Nrecovery more than N alone and CK. The nitrate content in the profile was thus reduced more in thecombination treatments. The nitrate accumulation in the soil profiles followed the order: N > NK >N1PK > NPK > NP > CK > PK. Higher N uptake by the adequately fertilized crops (Treatment NPK)reduced nitrate accumulation in the profile and thus reduced nitrate leaching. The optimum N:P:Kratio was thus of paramount importance in increasing yields and N uptake of crops and reducingnitrate leaching losses.