Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was stu...Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.展开更多
Numerous non-cyanide leaching lixiviants have been developed,among which thiosulfate is considered the most promising alternative to cyanide due to its non-toxicity,low price,high leaching rate and excellent character...Numerous non-cyanide leaching lixiviants have been developed,among which thiosulfate is considered the most promising alternative to cyanide due to its non-toxicity,low price,high leaching rate and excellent characteristics in dealing with carbonaceous and copper-bearing gold ores.The traditional copper−ammonia−thiosulfate system has been studied extensively.However,with many years of process development,there are still some problems and challenges with this gold leaching system.A series of studies using nickel-,cobalt-and ferric-based catalyst to substitute copper have been conducted with the purpose of reducing the consumption of thiosulfate.A variety of non-ammonia thiosulfate leaching systems including oxygen−thiosulfate,copper−thiosulfate,copper−EDA−thiosulfate,ferric−EDTA−thiosulfate,and ferric−oxalate−thiosulfate leaching systems have been also developed to eliminate the potential side-effect of ammonia.In this review,the basic theory and process development of some main gold leaching systems based on thiosulfate solutions were systematically summarized to illustrate the research status on thiosulfate leaching process.The potential effects of various additives such as organic ligands containing amino,carboxyl or hydroxy functional groups on gold thiosulfate leaching were described in detail.The potential opportunity and challenge for promoting the industrial development of thiosulfate-based gold leaching systems were also discussed.展开更多
The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leach...The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.展开更多
基金Project(51074182)supported by the National Natural Science Foundation of ChinaProject(2014M550422)supported by the Postdoctoral Science Foundation,ChinaProject(2015JJ3149)supported by the Natural Science Foundation of Hunan Province,China
文摘Arsenopyrite was artificially added into the thiosulfate leaching solution to clarify the role of arsenopyrite on the thiosulfate leaching of gold.The effect of arsenopyrite on the thiosulfate leaching of gold was studied by the thermodynamic calculation,mineral dissolution test,leaching test and XPS analysis.The results show that the thiosulfate consumption slightly increases with increasing the concentration of arsenopyrite,but the gold dissolution is obviously hindered.This may mainly attribute to the catalytic effect of arsenopyrite on the thiosulfate decomposition and the formation of passivation layer on the gold foil surface.The passivation layer likely consists of Cu2S or Cu(S2O3)35-,element S,FeOOH and iron arsenate,which is deduced from the XPS analysis.However,the negative effect of arsenopyrite can be eliminated by adding additives.It is found that both additives of sodium carboxymethyl(CMC) and sodium phosphate(SHPP) can not only decrease the thiosulfate consumption but also improve the gold dissolution.
基金financial supports from the Fundamental Research Funds for Central Universities of China (No. N182502044)。
文摘Numerous non-cyanide leaching lixiviants have been developed,among which thiosulfate is considered the most promising alternative to cyanide due to its non-toxicity,low price,high leaching rate and excellent characteristics in dealing with carbonaceous and copper-bearing gold ores.The traditional copper−ammonia−thiosulfate system has been studied extensively.However,with many years of process development,there are still some problems and challenges with this gold leaching system.A series of studies using nickel-,cobalt-and ferric-based catalyst to substitute copper have been conducted with the purpose of reducing the consumption of thiosulfate.A variety of non-ammonia thiosulfate leaching systems including oxygen−thiosulfate,copper−thiosulfate,copper−EDA−thiosulfate,ferric−EDTA−thiosulfate,and ferric−oxalate−thiosulfate leaching systems have been also developed to eliminate the potential side-effect of ammonia.In this review,the basic theory and process development of some main gold leaching systems based on thiosulfate solutions were systematically summarized to illustrate the research status on thiosulfate leaching process.The potential effects of various additives such as organic ligands containing amino,carboxyl or hydroxy functional groups on gold thiosulfate leaching were described in detail.The potential opportunity and challenge for promoting the industrial development of thiosulfate-based gold leaching systems were also discussed.
基金supported by Iran Mineral Processing Research Center (IMPRC)the IMPRC for the financial support of this work
文摘The use of mechanical activation to enhance gold recovery from a CuPbZn complex sulfide concentrate was investigated. The effects of milling time, ball size, sample to ball ratio and milling speed on thiosulfate leaching were studied. Under optimum conditions of milling time 1 h, ball size 20 mm, sample to ball ratio 1/15 and mill speed 600 r/min, nearly 78% of sample is amorphized, particle size decreases from d100=30 μm to d100=8 μm, specific surface area increases from 1.3 m2/g to 4.6 m2/g and gold recovery enhances from 17.4 % in non-activated sample to 73.26 %.