In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynami...In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.展开更多
The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are pre...The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.展开更多
基金Project(51204210)supported by the National Natural Science Foundation of ChinaProject(2011AA061001)supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04)supported by the National Science and Technology Pillar Program during the Twelfth Five-Year Plan of China
文摘In order to decrease the solubility of PbSO4 and enhance lead recovery from PbSO4 bearing wastes, CO was employed as a reductant to transform PbSO4 into Pb S. Reaction system was established and reductive thermodynamics of PbSO4 was calculated by software HSC 5.0. The effects of gas concentration, reaction temperature, time and mass of sample on reduction of PbSO4 were examined by thermogravimetry(TG) and XRD. Roasting tests further verify the conclusions of thermodynamic and TG analyses. The results show that increasing temperature in the reasonable range and CO content are favorable for the formation of Pb S. The reduction process is controlled by chemical reaction and calculation value of the activation energy is 47.88 k J/mol.
文摘The mechanism of the leaching process of chalcopyrite concentrate with sodium nitrate in sulphuric acid solution were studied and discussed. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the calculated Gibbs energies and analysis of E-pH diagrams. Experimental data, thermodynamic analysis, chemical, XRD, and SEM/EDX analyses of concentrate and the leach residues, were performed to develop a better understanding of the chemical reactions that took place in the system. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and tended to inhibit the leaching rate.