It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats w...It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats within the Jiaozhou Bay, China, we found that the AVS concentration gradually increases with depth and decreases from high tidal flat to low tidal flat areas. We evaluated the chemical activity and bioavailability of heavy metals in the tidal flat based on the molar ratio of simultaneously ex- tracted metals (SEM) and AVS. The value of SEM/AVS is generally less than 1 in this area except for the surface layer, which suggests that the heavy metals only have chemical activity in the surface layer. SEM is most highly concentrated at the boundary of the redox layer. SEM have similar depth distributions throughout the tidal flat. The aeration of low tidal flat sediment indicates that SEM gradually move to deeper sites via interstitial water.展开更多
Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics.We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus t...Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics.We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus to improve the quality of organically contaminated coastal sediment.Sediment samples were collected from a site that was heavily contaminated with organic matter (Seonso) and two sites that were clean (Myo-do,Dolsan-do).Urechis juveniles,obtained by artificial fertilization and cultured in the laboratory,were introduced to the sediment (weight 3 kg,depth 10 cm) at a density of 500 individuals per aquarium (length 50 cm,width 35 cm,height 30 cm) (Experiment 1),or at densities ranging from 100 to 900 individuals per beaker (Experiment 2).To examine how sediment contamination can be modified by the effects of Urechis,500 individuals (per aquarium) were exposed to the Seonso contaminated sediment that had been mixed with 0-100% clean sand (Experiment 3).Each experiment lasted two months and sediment samples were collected every 15 d to determine the several indexes of sediment quality,which included acid volatile sulfide (AVS),chemical oxygen demand (COD) and total ignition loss (TIL).In Experiment 1,the existence of Urechis did not result in significant changes in quality indexes in the sediments collected from Myo-do,Dolsan-do.However,AVS,COD and TIL of the Seonso sediment all decreased significantly after co-incubation with Urechis juveniles for 30 to 45 d.Experiment 2 showed that a density of at least 300 juveniles per beaker was necessary to significantly reduce all three quality indexes,and the magnitude of reduction was positively correlated with juvenile density.Experiment 3 revealed that Urechis juveniles were effective in reducing the AVS,COD and TIL of the Seonso sediment that had been mixed with 60%,80%,and 80% of clean sand,respectively.The results of the present study therefore indicated that juveniles of this spoon worm have the potential to be used to improve the quality of organically contaminated sediment in coastal waters.展开更多
The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs...The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs) to acid volatile sulfide (AVS). Atomic absorption spectrometry (AAS) and X-ray powder diffraction (XRD) were used to determine the heavy metal concentrations and examine the mineralogy of the crystalline phases, respectively. The AVS loadings in sediments from Baihua Lake ranged from 64.30 to 350.08 ~rnol/g (dry weight). The corresponding SEM levels for the sampling sites varied from 1.770 to 14.660 vrnol/g. The molar ratio of SEMs to AVS ranged from 0.014 to 0.084 with a mean value of 0.034. The XRD analysis also confirmed the presence of some metal sulfides in sediments from Baihua Lake. The SEMs/AVS ratios for all sampling sites were significantly lower than 1.0, indicating that AVS in the sediments was sufficient to bind the five heavy metals; thus, these heavy metals are currently not significantly bioavailable to benthic organisms. Comparing the SEMs results to published guideline values for metal toxicity to benthic organisms in sediments, however, suggests that Zn and Ni pose a risk at some sampling locations in Baihua Lake.展开更多
基金This work is supported by the National Natural Science Foundation of China(40476063).
文摘It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats within the Jiaozhou Bay, China, we found that the AVS concentration gradually increases with depth and decreases from high tidal flat to low tidal flat areas. We evaluated the chemical activity and bioavailability of heavy metals in the tidal flat based on the molar ratio of simultaneously ex- tracted metals (SEM) and AVS. The value of SEM/AVS is generally less than 1 in this area except for the surface layer, which suggests that the heavy metals only have chemical activity in the surface layer. SEM is most highly concentrated at the boundary of the redox layer. SEM have similar depth distributions throughout the tidal flat. The aeration of low tidal flat sediment indicates that SEM gradually move to deeper sites via interstitial water.
文摘Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics.We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus to improve the quality of organically contaminated coastal sediment.Sediment samples were collected from a site that was heavily contaminated with organic matter (Seonso) and two sites that were clean (Myo-do,Dolsan-do).Urechis juveniles,obtained by artificial fertilization and cultured in the laboratory,were introduced to the sediment (weight 3 kg,depth 10 cm) at a density of 500 individuals per aquarium (length 50 cm,width 35 cm,height 30 cm) (Experiment 1),or at densities ranging from 100 to 900 individuals per beaker (Experiment 2).To examine how sediment contamination can be modified by the effects of Urechis,500 individuals (per aquarium) were exposed to the Seonso contaminated sediment that had been mixed with 0-100% clean sand (Experiment 3).Each experiment lasted two months and sediment samples were collected every 15 d to determine the several indexes of sediment quality,which included acid volatile sulfide (AVS),chemical oxygen demand (COD) and total ignition loss (TIL).In Experiment 1,the existence of Urechis did not result in significant changes in quality indexes in the sediments collected from Myo-do,Dolsan-do.However,AVS,COD and TIL of the Seonso sediment all decreased significantly after co-incubation with Urechis juveniles for 30 to 45 d.Experiment 2 showed that a density of at least 300 juveniles per beaker was necessary to significantly reduce all three quality indexes,and the magnitude of reduction was positively correlated with juvenile density.Experiment 3 revealed that Urechis juveniles were effective in reducing the AVS,COD and TIL of the Seonso sediment that had been mixed with 60%,80%,and 80% of clean sand,respectively.The results of the present study therefore indicated that juveniles of this spoon worm have the potential to be used to improve the quality of organically contaminated sediment in coastal waters.
基金Supported by the National Natural Science Foundation of China(No.20967003)the Project of the Government of Guiyang City(No.[2010]5-2)
文摘The bioavailability of five divalent cationic heavy metals (Pb, Cd, Cu, Zn and Ni) in 10 superficial sediment samples from Baihua Lake was assessed based on the molar ratio of simultaneously extracted metals (SEMs) to acid volatile sulfide (AVS). Atomic absorption spectrometry (AAS) and X-ray powder diffraction (XRD) were used to determine the heavy metal concentrations and examine the mineralogy of the crystalline phases, respectively. The AVS loadings in sediments from Baihua Lake ranged from 64.30 to 350.08 ~rnol/g (dry weight). The corresponding SEM levels for the sampling sites varied from 1.770 to 14.660 vrnol/g. The molar ratio of SEMs to AVS ranged from 0.014 to 0.084 with a mean value of 0.034. The XRD analysis also confirmed the presence of some metal sulfides in sediments from Baihua Lake. The SEMs/AVS ratios for all sampling sites were significantly lower than 1.0, indicating that AVS in the sediments was sufficient to bind the five heavy metals; thus, these heavy metals are currently not significantly bioavailable to benthic organisms. Comparing the SEMs results to published guideline values for metal toxicity to benthic organisms in sediments, however, suggests that Zn and Ni pose a risk at some sampling locations in Baihua Lake.