A new convenient sulfide electrochemical sensor for marine environmental in situ monitoring and real time survey was developed. The new sensor based on a solid Ag 2S membrane electrode has outstanding chemical sensiti...A new convenient sulfide electrochemical sensor for marine environmental in situ monitoring and real time survey was developed. The new sensor based on a solid Ag 2S membrane electrode has outstanding chemical sensitivity and stability. It responds to the activity of sulfide ions according to a Nernstian slope of -31mV/decade. The sensor can be used to determine the total concentration of sulfides ( C T) by calibrating the pH value of the solution to a standard pH. The practical measurement range for total sulfide concentration is 0.1-10 mg/L in seawater. The sensor has a very low potential drift (<4mV) during two months in 0.1 mg/L sulfide seawater. This paper describes the preparation of the sensitive membrane and some main properties of the sensor.展开更多
The changes in heme (associated with hemoglobin), hemoglobin and hematin in the coelomic fluid of marine worm, Urechis unicinctus, exposed to different concentrations of sulfide, were investigated using bio- chemical ...The changes in heme (associated with hemoglobin), hemoglobin and hematin in the coelomic fluid of marine worm, Urechis unicinctus, exposed to different concentrations of sulfide, were investigated using bio- chemical techniques. When exposed to different sulfide concentrations for up to 96 h, the relative amounts of the three components changed in a regular pattern suggesting that the coelomocytes play an important role in the worm’s tolerance to sulfide. The possible roles of heme compounds in sulfide tolerance of this species are dis- cussed on the basis of our experimental data.展开更多
Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics.We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus t...Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics.We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus to improve the quality of organically contaminated coastal sediment.Sediment samples were collected from a site that was heavily contaminated with organic matter (Seonso) and two sites that were clean (Myo-do,Dolsan-do).Urechis juveniles,obtained by artificial fertilization and cultured in the laboratory,were introduced to the sediment (weight 3 kg,depth 10 cm) at a density of 500 individuals per aquarium (length 50 cm,width 35 cm,height 30 cm) (Experiment 1),or at densities ranging from 100 to 900 individuals per beaker (Experiment 2).To examine how sediment contamination can be modified by the effects of Urechis,500 individuals (per aquarium) were exposed to the Seonso contaminated sediment that had been mixed with 0-100% clean sand (Experiment 3).Each experiment lasted two months and sediment samples were collected every 15 d to determine the several indexes of sediment quality,which included acid volatile sulfide (AVS),chemical oxygen demand (COD) and total ignition loss (TIL).In Experiment 1,the existence of Urechis did not result in significant changes in quality indexes in the sediments collected from Myo-do,Dolsan-do.However,AVS,COD and TIL of the Seonso sediment all decreased significantly after co-incubation with Urechis juveniles for 30 to 45 d.Experiment 2 showed that a density of at least 300 juveniles per beaker was necessary to significantly reduce all three quality indexes,and the magnitude of reduction was positively correlated with juvenile density.Experiment 3 revealed that Urechis juveniles were effective in reducing the AVS,COD and TIL of the Seonso sediment that had been mixed with 60%,80%,and 80% of clean sand,respectively.The results of the present study therefore indicated that juveniles of this spoon worm have the potential to be used to improve the quality of organically contaminated sediment in coastal waters.展开更多
1.Great challenges in scientific frontiers of marine carbon storage in the scenario of global change The marine carbon cycle is influenced by anthropogenic activities,affecting global climate change and casting a sign...1.Great challenges in scientific frontiers of marine carbon storage in the scenario of global change The marine carbon cycle is influenced by anthropogenic activities,affecting global climate change and casting a significant impact on ecosystems.However,the complex spatiotemporal process of the marine carbon cycle results in the uncertainty in the estimation of marine carbon budget。展开更多
文摘A new convenient sulfide electrochemical sensor for marine environmental in situ monitoring and real time survey was developed. The new sensor based on a solid Ag 2S membrane electrode has outstanding chemical sensitivity and stability. It responds to the activity of sulfide ions according to a Nernstian slope of -31mV/decade. The sensor can be used to determine the total concentration of sulfides ( C T) by calibrating the pH value of the solution to a standard pH. The practical measurement range for total sulfide concentration is 0.1-10 mg/L in seawater. The sensor has a very low potential drift (<4mV) during two months in 0.1 mg/L sulfide seawater. This paper describes the preparation of the sensitive membrane and some main properties of the sensor.
基金This research was supported by the NSFC-KOSEF scientific coopera-tion program and NSFC (No. 30271039).
文摘The changes in heme (associated with hemoglobin), hemoglobin and hematin in the coelomic fluid of marine worm, Urechis unicinctus, exposed to different concentrations of sulfide, were investigated using bio- chemical techniques. When exposed to different sulfide concentrations for up to 96 h, the relative amounts of the three components changed in a regular pattern suggesting that the coelomocytes play an important role in the worm’s tolerance to sulfide. The possible roles of heme compounds in sulfide tolerance of this species are dis- cussed on the basis of our experimental data.
文摘Biological activities of marine benthos such as burrowing and feeding may change sediment characteristics.We conducted three experiments to examine the potential of using juveniles of a spoon worm Urechis unicinctus to improve the quality of organically contaminated coastal sediment.Sediment samples were collected from a site that was heavily contaminated with organic matter (Seonso) and two sites that were clean (Myo-do,Dolsan-do).Urechis juveniles,obtained by artificial fertilization and cultured in the laboratory,were introduced to the sediment (weight 3 kg,depth 10 cm) at a density of 500 individuals per aquarium (length 50 cm,width 35 cm,height 30 cm) (Experiment 1),or at densities ranging from 100 to 900 individuals per beaker (Experiment 2).To examine how sediment contamination can be modified by the effects of Urechis,500 individuals (per aquarium) were exposed to the Seonso contaminated sediment that had been mixed with 0-100% clean sand (Experiment 3).Each experiment lasted two months and sediment samples were collected every 15 d to determine the several indexes of sediment quality,which included acid volatile sulfide (AVS),chemical oxygen demand (COD) and total ignition loss (TIL).In Experiment 1,the existence of Urechis did not result in significant changes in quality indexes in the sediments collected from Myo-do,Dolsan-do.However,AVS,COD and TIL of the Seonso sediment all decreased significantly after co-incubation with Urechis juveniles for 30 to 45 d.Experiment 2 showed that a density of at least 300 juveniles per beaker was necessary to significantly reduce all three quality indexes,and the magnitude of reduction was positively correlated with juvenile density.Experiment 3 revealed that Urechis juveniles were effective in reducing the AVS,COD and TIL of the Seonso sediment that had been mixed with 60%,80%,and 80% of clean sand,respectively.The results of the present study therefore indicated that juveniles of this spoon worm have the potential to be used to improve the quality of organically contaminated sediment in coastal waters.
基金supported by State Key R&D Program (Grant No. 2016YFA0601104)the international IMBeR project
文摘1.Great challenges in scientific frontiers of marine carbon storage in the scenario of global change The marine carbon cycle is influenced by anthropogenic activities,affecting global climate change and casting a significant impact on ecosystems.However,the complex spatiotemporal process of the marine carbon cycle results in the uncertainty in the estimation of marine carbon budget。